APL-LLM: adaptive pseudo-labeling with large language models for few-shot node classification

Junyi LI , Chenweinan JIANG , Daixin WANG , Guo YE , Libang ZHANG , Huimei HE , Binbin HU , Zhiqiang ZHANG , Fuzhen ZHUANG

Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (12) : 2012365

PDF (811KB)
Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (12) : 2012365 DOI: 10.1007/s11704-025-51174-6
Artificial Intelligence
LETTER

APL-LLM: adaptive pseudo-labeling with large language models for few-shot node classification

Author information +
History +
PDF (811KB)

Graphical abstract

Cite this article

Download citation ▾
Junyi LI, Chenweinan JIANG, Daixin WANG, Guo YE, Libang ZHANG, Huimei HE, Binbin HU, Zhiqiang ZHANG, Fuzhen ZHUANG. APL-LLM: adaptive pseudo-labeling with large language models for few-shot node classification. Front. Comput. Sci., 2026, 20(12): 2012365 DOI:10.1007/s11704-025-51174-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Q, Chen L, Jing S, Wu D. Pseudo-labeling with graph active learning for few-shot node classification. In: Proceedings of 2023 IEEE International Conference on Data Mining. 2023, 1115–1120

[2]

Chen Z, Mao H, Wen H, Han H, Jin W, Zhang H, Liu H, Tang J. Label-free node classification on graphs with large language models (LLMs). In: Proceedings of the 12th International Conference on Learning Representations. 2024

[3]

Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. 2017

[4]

Pei H, Xiong Y, Wang P, Tao J, Liu J, Deng H, Ma J, Guan X. Memory disagreement: a pseudo-labeling measure from training dynamics for semi-supervised graph learning. In: Proceedings of the ACM on Web Conference 2024. 2024, 434–445

[5]

Ren X, Tang J, Yin D, Chawla N, Huang C. A survey of large language models for graphs. In: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2024, 6616–6626

[6]

Zhang J, Wang Y, Yang X, Wang S, Feng Y, Shi Y, Ren R, Zhu E, Liu X. Test-time training on graphs with large language models (LLMs). In: Proceedings of the 32nd ACM International Conference on Multimedia. 2024, 2089–2098

[7]

Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 1024–1034

[8]

Hu Z, Fu Y, Zhao H, Cai X, Jiang W, Pu S. Liberate pseudo labels from over-dependence: Label information migration on sparsely labeled graphs. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. 2023, 833–842

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (811KB)

Supplementary files

Highlights

396

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/