Trustworthy evaluation of large language models

Xin-Yi ZHANG , Han-Jia YE , De-Chuan ZHAN

Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (2) : 2002324

PDF (313KB)
Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (2) : 2002324 DOI: 10.1007/s11704-025-50442-9
Excellent Young Computer Scientists Vision
LETTER

Trustworthy evaluation of large language models

Author information +
History +
PDF (313KB)

Graphical abstract

Cite this article

Download citation ▾
Xin-Yi ZHANG, Han-Jia YE, De-Chuan ZHAN. Trustworthy evaluation of large language models. Front. Comput. Sci., 2026, 20(2): 2002324 DOI:10.1007/s11704-025-50442-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Y, Yao Y, Ton J F, Zhang X, Guo R, Cheng H, Klochkov Y, Taufiq M F, Li H. Trustworthy LLMs: a survey and guideline for evaluating large language models’ alignment. 2023, arXiv preprint arXiv: 2308.05374

[2]

Huang Y, Sun L, Wang H, Wu S, Zhang Q, Li Y, Gao C, Huang Y, Lyu W, Zhang Y, Li X, Sun H, Liu Z, Liu Y, Wang Y, Zhang Z, Vidgen B, Kailkhura B, Xiong C, Xiao C, Li C, Xing E P, Huang F, Liu H, Ji H, Wang H, Zhang H, Yao H, Kellis M, Zitnik M, Jiang M, Bansal M, Zou J, Pei J, Liu J, Gao J, Han J, Zhao J, Tang J, Wang J, Vanschoren J, Mitchell J, Shu K, Xu K, Chang K W, He L, Huang L, Backes M, Gong N Z, Yu P S, Chen P Y, Gu Q, Xu R, Ying R, Ji S, Jana S, Chen T, Liu T, Zhou T, Wang W Y, Li X, Zhang X, Wang X, Xie X, Chen X, Wang X, Liu Y, Ye Y, Cao Y, Chen Y, Zhao Y. TrustLLM: trustworthiness in large language models. In: Proceedings of the 41st International Conference on Machine Learning. 2024, 20166–20270

[3]

Mayer R C, Davis J H, Schoorman F D . An integrative model of organizational trust. The Academy of Management Review, 1995, 20( 3): 709–734

[4]

Toreini E, Aitken M, Coopamootoo K, Elliott K, Zelaya C G, van Moorsel A. The relationship between trust in AI and trustworthy machine learning technologies. In: Proceedings of 2020 Conference on Fairness, Accountability, and Transparency. 2020, 272–283

[5]

Liu H, Wang Y, Fan W, Liu X, Li Y, Jain S, Liu Y, Jain A, Tang J . Trustworthy AI: a computational perspective. ACM Transactions on Intelligent Systems and Technology, 2022, 14( 1): 4

[6]

Li B, Qi P, Liu B, Di S, Liu J, Pei J, Yi J, Zhou B . Trustworthy AI: from principles to practices. ACM Computing Surveys, 2023, 55( 9): 177

[7]

Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E H, Le Q V, Zhou D. Chain-of-thought prompting elicits reasoning in large language models. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 1800

[8]

Paul D, West R, Bosselut A, Faltings B. Making reasoning matter: measuring and improving faithfulness of chain-of-thought reasoning. In: Proceedings of Findings of the Association for Computational Linguistics. 2024, 15012–15032

[9]

Kandpal N, Deng H, Roberts A, Wallace E, Raffel C. Large language models struggle to learn long-tail knowledge. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 15696–15707

[10]

Zhang H, Song H, Li S, Zhou M, Song D . A survey of controllable text generation using transformer-based pre-trained language models. ACM Computing Surveys, 2024, 56( 3): 64

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (313KB)

Supplementary files

Highlights

531

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/