Dynamic scene representation in the era of neural rendering: from NeRFs to 3DGSs

Dong HAN , Cheng-Ye SU , Fan-Yi ZENG , Fang-Lue ZHANG , Miao WANG

Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (11) : 2011708

PDF (4920KB)
Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (11) : 2011708 DOI: 10.1007/s11704-025-50389-x
Image and Graphics
REVIEW ARTICLE

Dynamic scene representation in the era of neural rendering: from NeRFs to 3DGSs

Author information +
History +
PDF (4920KB)

Abstract

With the development of deep neural networks and differentiable rendering techniques, neural rendering methods, represented by Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have made significant progress. NeRF represents a 3D scene by encoding the appearance and geometry of the scene through neural networks, which are conditioned on both position and viewpoint. In contrast, 3DGS models the scene with a set of Gaussian ellipsoids, allowing for efficient rendering through the rasterization of these ellipsoids into images. However, both two methods are limited to representing static scenes. The rendering and reconstruction of dynamic scenes are critical in virtual reality and computer graphics. As such, extending neural rendering methods from static to dynamic scenes has become an important area of research. This survey organizes dynamic scene rendering methods based on NeRF and 3DGS and categorizes them according to different motion representations. Furthermore, it highlights the relevant applications of dynamic scene rendering, such as autonomous driving, digital humans, and 4D generation. Finally, we summarize the development of dynamic scene rendering and discuss the remaining limitations and open challenges.

Graphical abstract

Keywords

3D gaussian splatting / neural radiance field / dynamic scene rendering / 4D Novel view synthesis

Cite this article

Download citation ▾
Dong HAN, Cheng-Ye SU, Fan-Yi ZENG, Fang-Lue ZHANG, Miao WANG. Dynamic scene representation in the era of neural rendering: from NeRFs to 3DGSs. Front. Comput. Sci., 2026, 20(11): 2011708 DOI:10.1007/s11704-025-50389-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Broxton M, Flynn J, Overbeck R, Erickson D, Hedman P, Duvall M, Dourgarian J, Busch J, Whalen M, Debevec P . Immersive light field video with a layered mesh representation. ACM Transactions on Graphics, 2020, 39( 4): 86

[2]

Gortler S J, Grzeszczuk R, Szeliski R, Cohen M F. The lumigraph. In: Whitton M C, ed. Seminal Graphics Papers: Pushing the Boundaries. New York: Association for Computing Machinery, 2023, 48

[3]

Chai J X, Tong X, Chan S C, Shum H Y. Plenoptic sampling. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. 2000, 307−318

[4]

Kalantari N K, Wang T C, Ramamoorthi R . Learning-based view synthesis for light field cameras. ACM Transactions on Graphics, 2016, 35( 6): 193

[5]

Debevec P E, Taylor C J, Malik J. Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. In: Whitton M C, ed. Seminal Graphics Papers: Pushing the Boundaries. New York: Association for Computing Machinery, 2023, 49

[6]

Flynn J, Neulander I, Philbin J, Snavely N. Deep stereo: learning to predict new views from the world’s imagery. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016, 5515−5524

[7]

Hedman P, Ritschel T, Drettakis G, Brostow G . Scalable inside-out image-based rendering. ACM Transactions on Graphics, 2016, 35( 6): 231

[8]

Hedman P, Philip J, Price T, Frahm J M, Drettakis G, Brostow G . Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics, 2018, 37( 6): 257

[9]

Mildenhall B, Srinivasan P P, Tancik M, Barron J T, Ramamoorthi R, Ng R . NeRF: representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 2022, 65( 1): 99–106

[10]

Kerbl B, Kopanas G, Leimkuehler T, Drettakis G . 3D Gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics, 2023, 42( 4): 139

[11]

Newcombe R A, Fox D, Seitz S M. DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015, 343−352

[12]

Kumar S, Dai Y, Li H. Monocular dense 3D reconstruction of a complex dynamic scene from two perspective frames. In: Proceedings of 2017 IEEE International Conference on Computer Vision. 2017, 4659−4667

[13]

Yoon J S, Kim K, Gallo O, Park H S, Kautz J. Novel view synthesis of dynamic scenes with globally coherent depths from a monocular camera. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, 5335−5344

[14]

Lombardi S, Simon T, Saragih J, Schwartz G, Lehrmann A, Sheikh Y . Neural volumes: learning dynamic renderable volumes from images. ACM Transactions on Graphics, 2019, 38( 4): 65

[15]

Bansal A, Vo M, Sheikh Y, Ramanan D, Narasimhan S. 4D visualization of dynamic events from unconstrained multi-view videos. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, 5365−5374

[16]

Yu R, Russell C, Campbell N D F, Agapito L. Direct, dense, and deformable: template-based non-rigid 3D reconstruction from RGB video. In: Proceedings of 2015 IEEE International Conference on Computer Vision. 2015, 918−926

[17]

Niemeyer M, Mescheder L, Oechsle M, Geiger A. Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, 3501−3512

[18]

Niemeyer M, Mescheder L, Oechsle M, Geiger A. Occupancy flow: 4D reconstruction by learning particle dynamics. In: Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. 2019, 5378−5388

[19]

Pumarola A, Corona E, Pons-Moll G, Moreno-Noguer F. D-NeRF: neural radiance fields for dynamic scenes. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 10313−10322

[20]

Xu Z, Peng S, Lin H, He G, Sun J, Shen Y, Bao H, Zhou X. 4K4D: real-time 4D view synthesis at 4K resolution. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024, 20029−20040

[21]

Yang Z, Yang H, Pan Z, Zhang L. Real-time photorealistic dynamic scene representation and rendering with 4D Gaussian splatting. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[22]

Dellaert F, Lin Y C. Neural volume rendering: NeRF and beyond. 2020, arXiv preprint arXiv: 2101.05204

[23]

Tewari A, Thies J, Mildenhall B, Srinivasan P, Tretschk E, Yifan W, Lassner C, Sitzmann V, Martin-Brualla R, Lombardi S, Simon T, Theobalt C, Nießner M, Barron J F, Wetzstein G, Zollhöfer M, Golyanik V . Advances in neural rendering. Computer Graphics Forum, 2022, 42( 2): 703–735

[24]

Gao K, Gao Y, He H, Lu D, Xu L, Li J. NeRF: neural radiance field in 3D vision: a comprehensive review. 2022, arXiv preprint arXiv: 2210.00379

[25]

Fei B, Xu J, Zhang R, Zhou Q, Yang W, He Y. 3D Gaussian as a new vision era: a survey. 2024, arXiv preprint arXiv: 2402.07181

[26]

Wu T, Yuan Y J, Zhang L X, Yang J, Cao Y P, Yan L Q, Gao L . Recent advances in 3D Gaussian splatting. Computational Visual Media, 2024, 10( 4): 613–642

[27]

Bao Y, Ding T, Huo J, Liu Y, Li Y, Li W, Gao Y, Luo J . 3D Gaussian splatting: survey, technologies, challenges, and opportunities. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35( 7): 6832–6852

[28]

Yunus R, Lenssen J E, Niemeyer M, Liao Y, Rupprecht C, Theobalt C, Pons-Moll G, Huang J B, Golyanik V, Ilg E . Recent trends in 3D reconstruction of general non-rigid scenes. Computer Graphics Forum, 2024, 43( 2): e15062

[29]

Barron J T, Mildenhall B, Tancik M, Hedman P, Martin-Brualla R, Srinivasan P P. Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021, 5835−5844

[30]

Barron J T, Mildenhall B, Verbin D, Srinivasan P P, Hedman P. Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 5460−5469

[31]

Müller T, Evans A, Schied C, Keller A . Instant neural graphics primitives with a multiresolution hash encoding. ACM Transactions on Graphics, 2022, 41( 4): 102

[32]

Tancik M, Casser V, Yan X, Pradhan S, Mildenhall B P, Srinivasan P, Barron J T, Kretzschmar H. Block-NeRF: scalable large scene neural view synthesis. In: Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 8238−8248

[33]

Li T, Slavcheva M, Zollhoefer M, Green S, Lassner C, Kim C, Schmidt T, Lovegrove S, Goesele M, Newcombe R, Lv Z. Neural 3D video synthesis from multi-view video. In: Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 5511−5521

[34]

Xian W, Huang J B, Kopf J, Kim C. Space-time neural irradiance fields for free-viewpoint video. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 9416−9426

[35]

Du Y, Zhang Y, Yu H X, Tenenbaum J B, Wu J. Neural radiance flow for 4d view synthesis and video processing. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021, 14304−14314

[36]

Li Z, Niklaus S, Snavely N, Wang O. Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 6494−6504

[37]

Li Z, Wang Q, Cole F, Tucker R, Snavely N. DynIBaR: neural dynamic image-based rendering. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 4273−4284

[38]

Gao C, Saraf A, Kopf J, Huang J B. Dynamic view synthesis from dynamic monocular video. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021, 5692−5701

[39]

Liu Y L, Gao C, Meuleman A, Tseng H Y, Saraf A, Kim C, Chuang Y Y, Kopf J, Huang J B. Robust dynamic radiance fields. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 13−23

[40]

Kim S, Bae J, Yun Y, Lee H, Bang G, Uh Y. Sync-NeRF: generalizing dynamic NeRFs to unsynchronized videos. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. 2024, 2777−2785

[41]

Lou A, Planche B, Gao Z, Li Y, Luan T, Ding H, Chen T, Noble J, Wu Z. DaReNeRF: direction-aware representation for dynamic scenes. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 5031−5042

[42]

Tian F, Du S, Duan Y. MonoNeRF: learning a generalizable dynamic radiance field from monocular videos. In: Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. 2023, 17903−17913

[43]

Li X, Cao Z, Wu Y, Wang K, Xian K, Wang Z, Lin G. S-DyRF: reference-based stylized radiance fields for dynamic scenes. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 20102−20112

[44]

Biswas S, Wu Q, Banerjee B, Rezatofighi H. TFS-NeRF: template-free nerf for semantic 3D reconstruction of dynamic scene. In: Proceedings of the 38th International Conference on Neural Information Processing Systems. 2024, 3035

[45]

Park S, Son M, Jang S, Ahn Y C, Kim J Y, Kang N. Temporal interpolation is all you need for dynamic neural radiance fields. In: Proceedings of 2023 IEEE/CVF conference on computer vision and pattern recognition. 2023, 4212−4221

[46]

Wang L, Zhang J, Liu X, Zhao F, Zhang Y, Zhang Y, Wu M, Yu J, Xu L. Fourier PlenOctrees for dynamic radiance field rendering in real-time. In: Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 13514−13524

[47]

Yu A, Li R, Tancik M, Li H, Ng R, Kanazawa A. PlenOctrees for real-time rendering of neural radiance fields. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021, 5732−5741

[48]

Shao R, Zheng Z, Tu H, Liu B, Zhang H, Liu Y. Tensor4D: efficient neural 4D decomposition for high-fidelity dynamic reconstruction and rendering. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 16632−16642

[49]

Mihajlovic M, Prokudin S, Pollefeys M, Tang S. ResFields: residual neural fields for spatiotemporal signals. In: Proceedings of the 12th International Conference on Learning Representations. 2023

[50]

Fridovich-Keil S, Meanti G, Warburg F R, Recht B, Kanazawa A. K-planes: explicit radiance fields in space, time, and appearance. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 12479−12488

[51]

Cao A, Johnson J. HexPlane: a fast representation for dynamic scenes. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 130−141

[52]

Tretschk E, Tewari A, Golyanik V, Zollhöfer M, Lassner C, Theobalt C. Non-rigid neural radiance fields: reconstruction and novel view synthesis of a dynamic scene from monocular video. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021, 12939−12950

[53]

Park K, Sinha U, Barron J T, Bouaziz S, Goldman D B, Seitz S M, Martin-Brualla R. Nerfies: deformable neural radiance fields. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021, 5845−5854

[54]

Park K, Sinha U, Hedman P, Barron J T, Bouaziz S, Goldman D B, Martin-Brualla R, Seitz S M . HyperNeRF: a higher-dimensional representation for topologically varying neural radiance fields. ACM Transactions on Graphics, 2021, 40( 6): 238

[55]

Song L, Chen A, Li Z, Chen Z, Chen L, Yuan J, Xu Y, Geiger A . NeRFPlayer: a streamable dynamic scene representation with decomposed neural radiance fields. IEEE Transactions on Visualization and Computer Graphics, 2023, 29( 5): 2732–2742

[56]

Attal B, Huang J B, Richardt C, Zollhöfer M, Kopf J, O’Toole M, Kim C. HyperReel: high-fidelity 6-DoF video with ray-conditioned sampling. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 16610−16620

[57]

Wu T, Zhong F, Tagliasacchi A, Cole F, Oztireli C. D2NeRF: self-supervised decoupling of dynamic and static objects from a monocular video. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 2366

[58]

Tretschk E, Golyanik V, Zollhöfer M, Božič A, Lassner C, Theobalt C. SceNeRFlow: time-consistent reconstruction of general dynamic scenes. In: Proceedings of 2024 International Conference on 3D Vision (3DV). 2024, 1424−1435

[59]

Lin Y. Ced-Nerf: a compact and efficient method for dynamic neural radiance fields. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. 2024, 3504−3512

[60]

Fang J, Yi T, Wang X, Xie L, Zhang X, Liu W, Nießner M, Tian Q. Fast dynamic radiance fields with time-aware neural voxels. In: Proceedings of the SIGGRAPH Asia 2022 Conference Papers. 2022, 11

[61]

Qiu Z, Ren C, Song K, Zeng X, Yang L, Zhang J. Deformable NeRF using recursively subdivided Tetrahedra. In: Proceedings of the 32nd ACM International Conference on Multimedia. 2024, 6424−6432

[62]

Li X, Qiao Y L, Chen P Y, Jatavallabhula K M, Lin M C, Jiang C, Gan C. PAC-NeRF: physics augmented continuum neural radiance fields for geometry-agnostic system identification. In: Proceedings of the 11th International Conference on Learning Representations, 2023

[63]

Qiao Y L, Gao A, Xu Y, Feng Y, Huang J B, Lin M C. Dynamic mesh-aware radiance fields. In: Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. 2023, 385−396

[64]

Kaneko T. Improving physics-augmented continuum neural radiance field-based geometry-agnostic system identification with Lagrangian particle optimization. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 5470−5480

[65]

Chen J, Qin Y, Liu L, Lu J, Li G. NeRF-HuGS: improved neural radiance fields in non-static scenes using heuristics-guided segmentation. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 19436−19446

[66]

Peng S, Dong J, Wang Q, Zhang S, Shuai Q, Zhou X, Bao H. Animatable neural radiance fields for modeling dynamic human bodies. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021, 14294−14303

[67]

Xu H, Alldieck T, Sminchisescu C. H-NeRF: neural radiance fields for rendering and temporal reconstruction of humans in motion. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. 2021, 1146

[68]

Shao R, Zhang H, Zhang H, Chen M, Cao Y P, Yu T, Liu Y. DoubleField: bridging the neural surface and radiance fields for high-fidelity human reconstruction and rendering. In: Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 15851−15861

[69]

Zheng Z, Huang H, Yu T, Zhang H, Guo Y, Liu Y. Structured local radiance fields for human avatar modeling. In: Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 15872−15882

[70]

Gafni G, Thies J, Zollhöfer M, Nießner M. Dynamic neural radiance fields for monocular 4D facial avatar reconstruction. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 8645−8654

[71]

Peng S, Zhang Y, Xu Y, Wang Q, Shuai Q, Bao H, Zhou X. Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 9050−9059

[72]

Schönberger J L, Frahm J M. Structure-from-motion revisited. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016, 4104−4113

[73]

Yang Z, Gao X, Zhou W, Jiao S, Zhang Y, Jin X. Deformable 3D Gaussians for high-fidelity monocular dynamic scene reconstruction. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 20331−20341

[74]

Wu G, Yi T, Fang J, Xie L, Zhang X, Wei W, Liu W, Tian Q, Wang X. 4D Gaussian splatting for real-time dynamic scene rendering. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 20310−20320

[75]

Huang Y H, Sun Y T, Yang Z, Lyu X, Cao Y P, Qi X. SC-GS: sparse-controlled Gaussian splatting for editable dynamic scenes. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 4220−4230

[76]

Liang Y, Khan N, Li Z, Nguyen-Phuoc T, Lanman D, Tompkin J, Xiao L. GauFRe: Gaussian deformation fields for real-time dynamic novel view synthesis. In: Proceedings of 2025 IEEE/CVF Winter Conference on Applications of Computer Vision. 2025, 2642−2652

[77]

Duisterhof B P, Mandi Z, Yao Y, Liu J W, Seidenschwarz J, Shou M Z, Ramanan D, Song S, Birchfield S, Wen B, Ichnowski J. DeformGS: scene flow in highly deformable scenes for deformable object manipulation. 2023, arXiv preprint arXiv: 2312.00583

[78]

Sun J, Jiao H, Li G, Zhang Z, Zhao L, Xing W. 3DGStream: on-the-fly training of 3D Gaussians for efficient streaming of photo-realistic free-viewpoint videos. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 20675−20685

[79]

Xu J, Fan Z, Yang J, Xie J. Grid4D: 4D decomposed hash encoding for high-fidelity dynamic Gaussian splatting. In: Proceedings of the 38th International Conference on Neural Information Processing Systems. 2024, 3934

[80]

Guo Z, Zhou W, Li L, Wang M, Li H . Motion-aware 3D Gaussian splatting for efficient dynamic scene reconstruction. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35( 4): 3119–3133

[81]

Zhang S, Zhao H, Zhou Z, Wu G, Zheng C, Wang X, Liu W . TOGS: Gaussian splatting with temporal opacity offset for real-time 4D DSA rendering. IEEE Journal of Biomedical and Health Informatics, 2025, 29( 9): 6793–6805

[82]

Zhang T, Gao Q, Li W, Liu L, Chen B. BAGS: building animatable Gaussian splatting from a monocular video with diffusion priors. 2024, arXiv preprint arXiv: 2403.11427

[83]

Yu H, Julin J, Milacski Z Á, Niinuma K, Jeni L A. CoGS: controllable Gaussian splatting. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 21624−21633

[84]

Lu Z, Guo X, Hui L, Chen T, Yang M, Tang X, Zhu F, Dai Y. 3D geometry-aware deformable Gaussian splatting for dynamic view synthesis. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 8900−8910

[85]

Zhang B, Zeng B, Peng Z. A refined 3D Gaussian representation for high-quality dynamic scene reconstruction. 2024, arXiv preprint arXiv: 2405.17891

[86]

Zhao B, Li Y, Sun Z, Zeng L, Shen Y, Ma R, Zhang Y, Bao H, Cui Z. GaussianPrediction: dynamic 3D Gaussian prediction for motion extrapolation and free view synthesis. In: Proceedings of the ACM SIGGRAPH 2024 Conference Papers. 2024, 84

[87]

Wan D, Lu R, Zeng G. Superpoint Gaussian splatting for real-time high-fidelity dynamic scene reconstruction. In: Proceedings of the 41st International Conference on Machine Learning. 2024, 2043

[88]

Mihajlovic M, Prokudin S, Tang S, Maier R, Bogo F, Tung T, Boyer E. SplatFields: neural Gaussian splats for sparse 3D and 4D reconstruction. In: Proceedings of the 18th European Conference on Computer Vision. 2024, 313−332

[89]

Gao Q, Meng J, Wen C, Chen J, Zhang J. HiCoM: hierarchical coherent motion for streamable dynamic scene with 3D Gaussian splatting. In: Proceedings of the 38th International Conference on Neural Information Processing Systems. 2024, 2563

[90]

Chen D, Oberson B, Feldmann I, Schreer O, Hilsmann A, Eisert P. Adaptive and temporally consistent Gaussian surfels for multi-view dynamic reconstruction. In: Proceedings of 2025 IEEE/CVF Winter Conference on Applications of Computer Vision. 2025, 742−752

[91]

Das D, Wewer C, Yunus R, Ilg E, Lenssen J E. Neural parametric Gaussians for monocular non-rigid object reconstruction. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 10715−10725

[92]

Luiten J, Kopanas G, Leibe B, Ramanan D. Dynamic 3D Gaussians: tracking by persistent dynamic view synthesis. In: Proceedings of 2024 International Conference on 3D Vision (3DV). 2024, 800−809

[93]

Lin Y, Dai Z, Zhu S, Yao Y. Gaussian-flow: 4D reconstruction with dynamic 3D Gaussian particle. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 21136−21145

[94]

Gao Q, Xu Q, Cao Z, Mildenhall B, Ma W, Chen L, Tang D, Neumann U. GaussianFlow: splatting Gaussian dynamics for 4D content creation. 2024, arXiv preprint arXiv: 2403.12365

[95]

Lei J, Weng Y, Harley A W, Guibas L, Daniilidis K. MoSca: dynamic Gaussian fusion from casual videos via 4D motion scaffolds. In: Proceedings of 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2025, 6165−6177

[96]

Li Z, Chen Z, Li Z, Xu Y. Spacetime Gaussian feature splatting for real-time dynamic view synthesis. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 8508−8520

[97]

Lee J, Won C, Jung H, Bae I, Jeon H G. Fully explicit dynamic Gaussian splatting. In: Proceedings of the 38th International Conference on Neural Information Processing Systems. 2024, 174

[98]

Yoon J, Han S, Oh J, Lee M. SplineGS: learning smooth trajectories in Gaussian splatting for dynamic scene reconstruction. In: Proceedings of the 13th International Conference on Learning Representations. 2025

[99]

Gao L, Yang J, Zhang B T, Sun J M, Yuan Y J, Fu H, Lai Y K. Mesh-based Gaussian splatting for real-time large-scale deformation. 2024, arXiv preprint arXiv: 2402.04796

[100]

Zhu R, Liang Y, Chang H, Deng J, Lu J, Yang W, Zhang T, Zhang Y. MotionGS: exploring explicit motion guidance for deformable 3D Gaussian splatting. In: Proceedings of the 38th International Conference on Neural Information Processing Systems. 2024, 3229

[101]

Wang S, Yang X, Shen Q, Jiang Z, Wang X. GFlow: recovering 4D world from monocular video. In: Proceedings of the 39th AAAI Conference on Artificial Intelligence. 2025, 7862−7870

[102]

Shih M L, Huang J B, Kim C, Shah R, Kopf J, Gao C. Modeling ambient scene dynamics for free-view synthesis. In: Proceedings of the ACM SIGGRAPH 2024 Conference Papers. 2024, 86

[103]

Xie L, Julin J, Niinuma K, Jeni L A. Gaussian splatting Lucas-Kanade. In: Proceedings of the 13th International Conference on Learning Representations. 2025

[104]

Bond A, Wang J H, Mai L, Erdem E, Erdem A. GaussianVideo: efficient video representation via hierarchical Gaussian splatting. 2025, arXiv preprint arXiv: 2501.04782

[105]

Duan Y, Wei F, Dai Q, He Y, Chen W, Chen B. 4D-rotor Gaussian splatting: towards efficient novel view synthesis for dynamic scenes. In: Proceedings of the ACM SIGGRAPH 2024 Conference Papers. 2024, 87

[106]

Bae J, Kim S, Yun Y, Lee H, Bang G, Uh Y. Per-Gaussian embedding-based deformation for deformable 3D Gaussian splatting. In: Proceedings of the 18th European Conference on Computer Vision. 2024, 321−335

[107]

Cho W O, Cho I, Kim S, Bae J, Uh Y, Kim S J. 4D scaffold Gaussian splatting for memory efficient dynamic scene reconstruction. 2024, arXiv preprint arXiv: 2411.17044

[108]

Yan J, Peng R, Tang L, Wang R. 4D Gaussian splatting with scale-aware residual field and adaptive optimization for real-time rendering of temporally complex dynamic scenes. In: Proceedings of the 32nd ACM International Conference on Multimedia. 2024, 7871−7880

[109]

Kim M, Lim J, Han B. 4D Gaussian splatting in the wild with uncertainty-aware regularization. In: Proceedings of the 38th ACM International Conference on Multimedia. 2024, 4104

[110]

Liu Q, Liu Y, Wang J, Lyu X, Wang P, Wang W, Hou J. MoDGS: dynamic Gaussian splatting from casually-captured monocular videos with depth priors. In: Proceedings of the 13th International Conference on Learning Representations. 2025

[111]

He B, Chen Y, Lu G, Wang Q, Gu Q, Xie R, Song L, Zhang W. S4D: streaming 4D real-world reconstruction with Gaussians and 3D control points. 2024, arXiv preprint arXiv: 2408.13036

[112]

Zhang X, Liu Z, Zhang Y, Ge X, He D, Xu T, Wang Y, Lin Z, Yan S, Zhang J. MEGA: memory-efficient 4D Gaussian splatting for dynamic scenes. 2024, arXiv preprint arXiv: 2410.13613

[113]

Yan Z, Li C, Lee G H. NeRF-DS: neural radiance fields for dynamic specular objects. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 8285−8295

[114]

Gao H, Li R, Tulsiani S, Russell B, Kanazawa A. Monocular dynamic view synthesis: a reality check. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 2447

[115]

Sabater N, Boisson G, Vandame B, Kerbiriou P, Babon F, Hog M, Gendrot R, Langlois T, Bureller O, Schubert A, Allié V. Dataset and pipeline for multi-view light-field video. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017, 1743−1753

[116]

Li L, Shen Z, Wang Z, Shen L, Tan P. Streaming radiance fields for 3D video synthesis. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 980

[117]

Song C, Yang G, Deng K, Zhu J Y, Ramanan D. Total-recon: deformable scene reconstruction for embodied view synthesis. In: Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. 2023, 17625−17636

[118]

Işık M, Rünz M, Georgopoulos M, Khakhulin T, Starck J, Agapito L, Nießner M . HumanRF: high-fidelity neural radiance fields for humans in motion. ACM Transactions on Graphics, 2023, 42( 4): 160

[119]

Chen Y, Wang X, Chen X, Zhang Q, Li X, Guo Y, Wang J, Wang F. UV volumes for real-time rendering of editable free-view human performance. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 16621−16631

[120]

Geng C, Peng S, Xu Z, Bao H, Zhou X. Learning neural volumetric representations of dynamic humans in minutes. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 8759−8770

[121]

Kim J, Wee D, Xu D. Motion-oriented compositional neural radiance fields for monocular dynamic human modeling. In: Proceedings of the 18th European Conference on Computer Vision. 2024, 476−493

[122]

Jung H, Brasch N, Song J, Pérez-Pellitero E, Zhou Y, Li Z, Navab N, Busam B. Deformable 3D Gaussian splatting for animatable human avatars. 2023, arXiv preprint arXiv: 2312.15059

[123]

Loper M, Mahmood N, Romero J, Pons-Moll G, Black M J . SMPL: a skinned multi-person linear model. ACM Transactions on Graphics, 2015, 34( 6): 248

[124]

Li M, Tao J, Yang Z, Yang Y. Human101: training 100+FPS human Gaussians in 100s from 1 view. 2023, arXiv preprint arXiv: 2312.15258

[125]

Wen J, Zhao X, Ren Z, Schwing A G, Wang S. GoMAvatar: efficient animatable human modeling from monocular video using Gaussians-on-mesh. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 2059−2069

[126]

Paudel P, Khanal A, Paudel D P, Tandukar J, Chhatkuli A. iHuman: instant animatable digital humans from monocular videos. In: Proceedings of the 18th European Conference on Computer Vision. 2024, 304−323

[127]

Zheng C, Xue L, Zarate J, Song J. GauSTAR: Gaussian surface tracking and reconstruction. 2025, arXiv preprint arXiv: 2501.10283

[128]

Zheng C, Xue L, Zarate J, Song J. GauSTAR: gaussian surface tracking and reconstruction. In: Proceedings of the Computer Vision and Pattern Recognition Conference. 2025, 16543–16553

[129]

Zheng Y, Abrevaya V F, Bühler M C, Chen X, Black M J, Hilliges O. I M avatar: implicit morphable head avatars from videos. In: Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 13535−13545

[130]

Zielonka W, Bolkart T, Thies J. Instant volumetric head avatars. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2023, 4574−4584

[131]

Li T, Bolkart T, Black M J, Li H, Romero J . Learning a model of facial shape and expression from 4D scans. ACM Transactions on Graphics, 2017, 36( 6): 194

[132]

Gao X, Zhong C, Xiang J, Hong Y, Guo Y, Zhang J . Reconstructing personalized semantic facial nerf models from monocular video. ACM Transactions on Graphics, 2022, 41( 6): 200

[133]

Xu Y, Wang L, Zhao X, Zhang H, Liu Y. AvatarMAV: fast 3D head avatar reconstruction using motion-aware neural voxels. In: Proceedings of ACM SIGGRAPH 2023 Conference Proceedings. 2023, 47

[134]

Qian S, Kirschstein T, Schoneveld L, Davoli D, Giebenhain S, Nießner M. GaussianAvatars: photorealistic head avatars with rigged 3D Gaussians. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 20299−20309

[135]

Wang J, Xie J C, Li X, Xu F, Pun C M, Gao H . GaussianHead: high-fidelity head avatars with learnable Gaussian derivation. IEEE Transactions on Visualization and Computer Graphics, 2025, 31( 7): 4141–4154

[136]

Xiang J, Gao X, Guo Y, Zhang J. FlashAvatar: high-fidelity head avatar with efficient Gaussian embedding. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 1802−1812

[137]

Chen Y, Wang L, Li Q, Xiao H, Zhang S, Yao H, Liu Y. MonoGaussianAvatar: monocular Gaussian point-based head avatar. In: Proceedings of the ACM SIGGRAPH 2024 Conference Papers. 2024, 58

[138]

Zheng Y, Yifan W, Wetzstein G, Black M J, Hilliges O. PointAvatar: deformable point-based head avatars from videos. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 21057−21067

[139]

Ma S, Weng Y, Shao T, Zhou K. 3D Gaussian blendshapes for head avatar animation. In: Proceedings of the ACM SIGGRAPH 2024 Conference Papers. 2024, 60

[140]

Yuan Z, Pu Y, Luo H, Lang F, Chi C, Li T, Shen Y, Sun H, Wang B, Yang X. Uni-Gaussians: unifying camera and LiDAR simulation with Gaussians for dynamic driving scenarios. 2025, arXiv preprint arXiv: 2503.08317

[141]

Khan M, Fazlali H, Sharma D, Cao T, Bai D, Ren Y, Liu B. AutoSplat: constrained Gaussian splatting for autonomous driving scene reconstruction. In: Proceedings of 2025 IEEE International Conference on Robotics and Automation. 2025, 8315−8321

[142]

Tonderski A, Lindström C, Hess G, Ljungbergh W, Svensson L, Petersson C. NeuRAD: neural rendering for autonomous driving. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 14895−14904

[143]

Zhou X, Lin Z, Shan X, Wang Y, Sun D, Yang M H. DrivingGaussian: composite Gaussian splatting for surrounding dynamic autonomous driving scenes. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 21634−21643

[144]

Fei X, Zheng W, Duan Y, Zhan W, Tomizuka M, Keutzer K, Lu J. Driv3R: learning dense 4D reconstruction for autonomous driving. 2024, arXiv preprint arXiv: 2412.06777

[145]

Yang J, Ivanovic B, Litany O, Weng X, Kim S W, Li B, Che T, Xu D, Fidler S, Pavone M, Wang Y. EmerNeRF: emergent spatial-temporal scene decomposition via self-supervision. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[146]

Tu J, Ji W, Zhao H, Zhang C, Zimmermann R, Qian H . DriveDiTFit: fine-tuning diffusion transformers for autonomous driving. ACM Transactions on Multimedia Computing, Communications and Applications, 2024, 21( 3): 85

[147]

Singer U, Sheynin S, Polyak A, Ashual O, Makarov I, Kokkinos F, Goyal N, Vedaldi A, Parikh D, Johnson J, Taigman Y. Text-to-4D dynamic scene generation. In: Proceedings of the 40th International Conference on Machine Learning, 2023, 1323

[148]

Zhao Y, Yan Z, Xie E, Hong L, Li Z, Lee G H. Animate124: animating one image to 4D dynamic scene. 2023, arXiv preprint arXiv: 2311.14603

[149]

Jiang H, Sun H, Li R, Tang C K, Tai Y W. Inpaint4DNeRF: promptable spatio-temporal NeRF inpainting with generative diffusion models. 2023, arXiv preprint arXiv: 2401.00208

[150]

Zhang H, Chen X, Wang Y, Liu X, Wang Y, Qiao Y. 4Diffusion: multi-view video diffusion model for 4D generation. In: Proceedings of the 38th International Conference on Neural Information Processing Systems, 2024, 488

[151]

Xie Y, Yao C H, Voleti V, Jiang H, Jampani V. SV4D: dynamic 3D content generation with multi-frame and multi-view consistency. In: Proceedings of the 13th International Conference on Learning Representations. 2025

[152]

Ling H, Kim S W, Torralba A, Fidler S, Kreis K. Align your Gaussians: text-to-4D with dynamic 3D Gaussians and composed diffusion models. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 8576−8588

[153]

Ren J, Pan L, Tang J, Zhang C, Cao A, Zeng G, Liu Z. DreamGaussian4D: generative 4D Gaussian splatting. 2023, arXiv preprint arXiv: 2312.17142

[154]

Wu Z, Yu C, Jiang Y, Cao C, Wang F, Bai X. SC4D: sparse-controlled video-to-4D generation and motion transfer. In: Proceedings of the 18th European Conference on Computer Vision. 2024, 361−379

[155]

Sun Q, Guo Z, Wan Z, Yan J N, Yin S, Zhou W, Liao J, Li H. EG4D: explicit generation of 4D object without score distillation. In: Proceedings of the 13th International Conference on Learning Representations. 2025

[156]

Miao Q, Quan J, Li K, Luo Y. PLA4D: pixel-level alignments for text-to-4D Gaussian splatting. 2024, arXiv preprint arXiv: 2405.19957

[157]

Ren J, Xie C, Mirzaei A, Liang H, Zeng X, Kreis K, Liu Z, Torralba A, Fidler S, Kim S W, Ling H. L4GM: large 4D Gaussian reconstruction model. In: Proceedings of the 38th International Conference on Neural Information Processing Systems, 2024, 1810

[158]

Tang J, Chen Z, Chen X, Wang T, Zeng G, Liu Z. LGM: large multi-view Gaussian model for high-resolution 3D content creation. In: Proceedings of the 18th European Conference on Computer Vision. 2024, 1−18

[159]

Li Z, Chen Y, Liu P. DreamMesh4D: video-to-4D generation with sparse-controlled Gaussian-mesh hybrid representation. In: Proceedings of the 38th International Conference on Neural Information Processing Systems, 2024, 674

[160]

Rosinol A, Leonard J J, Carlone L. NeRF-SLAM: real-time dense monocular SLAM with neural radiance fields. In: Proceedings of 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2023, 3437−3444

[161]

Yan C, Qu D, Xu D, Zhao B, Wang Z, Wang D, Li X. GS-SLAM: dense visual SLAM with 3D Gaussian splatting. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 19595−19604

[162]

Xu Y, Jiang H, Xiao Z, Feng J, Zhang L. DG-SLAM: robust dynamic Gaussian splatting SLAM with hybrid pose optimization. In: Proceedings of the 38th International Conference on Neural Information Processing Systems, 1633

[163]

Lee Y C, Zhang Z, Blackburn-Matzen K, Niklaus S, Zhang J, Huang J B, Liu F. Fast view synthesis of casual videos with soup-of-planes. In: Proceedings of the 18th European Conference on Computer Vision. 2024, 278−296

[164]

Wu R, Gao R, Poole B, Trevithick A, Zheng C, Barron J T, Hołyński A. CAT4D: create anything in 4D with multi-view video diffusion models. In: Proceedings of 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2025, 26057−26068

[165]

Choi C, Kim S M, Kim Y M. Balanced spherical grid for egocentric view synthesis. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 12663−12673

[166]

Zhang D, Li G, Li J, Bressieux M, Hilliges O, Pollefeys M, Van Gool L, Wang X. EgoGaussian: dynamic scene understanding from egocentric video with 3D Gaussian splatting. In: Proceedings of 2025 International Conference on 3D Vision. 2025, 1091−1102

[167]

Li D, Feng J, Chen J, Dong W, Li G, Shi G, Jiao L. EgoSplat: open-vocabulary egocentric scene understanding with language embedded 3D Gaussian splatting. 2025, arXiv preprint arXiv: 2503.11345

[168]

Reiser C, Szeliski R, Verbin D, Srinivasan P, Mildenhall B, Geiger A, Barron J, Hedman P . MERF: memory-efficient radiance fields for real-time view synthesis in unbounded scenes. ACM Transactions on Graphics, 2023, 42( 4): 89

[169]

Duan H B, Wang M, Shi J C, Chen X C, Cao Y P . BakedAvatar: baking neural fields for real-time head avatar synthesis. ACM Transactions on Graphics, 2023, 42( 6): 225

[170]

Kerr J, Kim C M, Goldberg K, Kanazawa A, Tancik M. LERF: language embedded radiance fields. In: Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. 2023, 19672−19682

[171]

Shi J C, Wang M, Duan H B, Guan S H. Language embedded 3D Gaussians for open-vocabulary scene understanding. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 5333−5343

[172]

Qin M, Li W, Zhou J, Wang H, Pfister H. LangSplat: 3D language Gaussian splatting. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 20051−20060

[173]

Gu A, Dao T. Mamba: linear-time sequence modeling with selective state spaces. 2023, arXiv preprint arXiv: 2312.00752

[174]

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, 6000−6010

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4920KB)

Supplementary files

Highlights

222

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/