A survey of geometric graph neural networks: data structures, models and applications

Jiaqi HAN , Jiacheng CEN , Liming WU , Zongzhao LI , Xiangzhe KONG , Rui JIAO , Ziyang YU , Tingyang XU , Fandi WU , Zihe WANG , Hongteng XU , Zhewei WEI , Deli ZHAO , Yang LIU , Yu RONG , Wenbing HUANG

Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (11) : 1911375

PDF (2173KB)
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (11) : 1911375 DOI: 10.1007/s11704-025-41426-w
Artificial Intelligence
REVIEW ARTICLE

A survey of geometric graph neural networks: data structures, models and applications

Author information +
History +
PDF (2173KB)

Abstract

Geometric graphs are a special kind of graph with geometric features, which are vital to model many scientific problems. Unlike generic graphs, geometric graphs often exhibit physical symmetries of translations, rotations, and reflections, making them ineffectively processed by current Graph Neural Networks (GNNs). To address this issue, researchers proposed a variety of geometric GNNs equipped with invariant/equivariant properties to better characterize the geometry and topology of geometric graphs. Given the current progress in this field, it is imperative to conduct a comprehensive survey of data structures, models, and applications related to geometric GNNs. In this paper, based on the necessary but concise mathematical preliminaries, we formalize geometric graph as the data structure, on top of which we provide a unified view of existing models from the geometric message passing perspective. Additionally, we summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation. We also discuss the challenges and future potential directions of geometric GNNs at the end of this survey.

Graphical abstract

Keywords

scientific systems / geometric graphs / graph neural networks / equivariance / invariance

Cite this article

Download citation ▾
Jiaqi HAN, Jiacheng CEN, Liming WU, Zongzhao LI, Xiangzhe KONG, Rui JIAO, Ziyang YU, Tingyang XU, Fandi WU, Zihe WANG, Hongteng XU, Zhewei WEI, Deli ZHAO, Yang LIU, Yu RONG, Wenbing HUANG. A survey of geometric graph neural networks: data structures, models and applications. Front. Comput. Sci., 2025, 19(11): 1911375 DOI:10.1007/s11704-025-41426-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bronstein M M, Bruna J, Cohen T, Veličković P. Geometric deep learning: grids, groups, graphs, geodesics, and gauges. 2021, arXiv preprint arXiv: 2104.13478

[2]

Schütt K T, Arbabzadah F, Chmiela S, Müller K R, Tkatchenko A . Quantum-chemical insights from deep tensor neural networks. Nature Communications, 2017, 8: 13890

[3]

Klicpera J, Groß J, Gunnemann S. Directional message passing for molecular graphs. In: Proceedings of the 8th International Conference on Learning Representations. 2020

[4]

Klicpera J, Becker F, Günnemann S. GemNet: universal directional graph neural networks for molecules. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. 2021, 520

[5]

Satorras V G, Hoogeboom E, Welling M. E(n) equivariant graph neural networks. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 9323−9332

[6]

Schütt K, Unke O, Gastegger M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 9377−9388

[7]

Thomas N, Smidt T, Kearnes S, Yang L, Li L, Kohlhoff K, Riley P. Tensor field networks: rotation- and translation-equivariant neural networks for 3D point clouds. 2018, arXiv preprint arXiv: 1802.08219

[8]

Fuchs F B, Worrall D E, Fischer V, Welling M. SE(3)-Transformers: 3D roto-translation equivariant attention networks. In: Proceedings of the 34th Conference on Neural Information Processing Systems. 2020

[9]

Brandstetter J, Hesselink R, van der Pol E, Bekkers E J, Welling M. Geometric and physical quantities improve E(3) equivariant message passing. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[10]

Batzner S, Musaelian A, Sun L, Geiger M, Mailoa J P, Kornbluth M, Molinari N, Smidt T E, Kozinsky B . E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature Communications, 2022, 13( 1): 2453

[11]

Liao Y L, Smidt T E. Equiformer: equivariant graph attention transformer for 3D atomistic graphs. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[12]

Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, . . Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373( 6557): 871–876

[13]

Watson J L, Juergens D, Bennett N R, Trippe B L, Yim J, . . De novo design of protein structure and function with RFdiffusion. Nature, 2023, 620( 7976): 1089–1100

[14]

Ingraham J B, Baranov M, Costello Z, Barber K W, Wang W, . . Illuminating protein space with a programmable generative model. Nature, 2023, 623( 7989): 1070–1078

[15]

Townshend R J L, Eismann S, Watkins A M, Rangan R, Karelina M, Das R, Dror R O . Geometric deep learning of RNA structure. Science, 2021, 373( 6558): 1047–1051

[16]

Corso G, Stärk H, Jing B, Barzilay R, Jaakkola T S. DiffDock: diffusion steps, twists, and turns for molecular docking. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[17]

Kong X, Huang W, Liu Y. End-to-end full-atom antibody design. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 718

[18]

Gilmer J, Schoenholz S S, Riley P F, Vinyals O, Dahl G E. Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning. 2017, 1263−1272

[19]

McNutt A T, Francoeur P, Aggarwal R, Masuda T, Meli R, Ragoza M, Sunseri J, Koes D R . GNINA 1.0: molecular docking with deep learning. Journal of Cheminformatics, 2021, 13( 1): 43

[20]

Adolf-Bryfogle J, Kalyuzhniy O, Kubitz M, Weitzner B D, Hu X, Adachi Y, Schief W R, Dunbrack Jr R L . RosettaAntibodyDesign (RAbD): a general framework for computational antibody design. PLoS Computational Biology, 2018, 14( 4): e1006112

[21]

Ramakrishnan R, Dral P O, Rupp M, von Lilienfeld O A . Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 2014, 1: 140022

[22]

Liu Z, Su M, Han L, Liu J, Yang Q, Li Y, Wang R . Forging the basis for developing protein–ligand interaction scoring functions. Accounts of Chemical Research, 2017, 50( 2): 302–309

[23]

Dunbar J, Krawczyk K, Leem J, Baker T, Fuchs A, Georges G, Shi J, Deane C M . SAbDab: the structural antibody database. Nucleic Acids Research, 2014, 42( D1): D1140–D1146

[24]

Han J, Rong Y, Xu T, Huang W. Geometrically equivariant graph neural networks: a survey. 2022, arXiv preprint arXiv: 2202.07230

[25]

Han J, Huang W, Ma H, Li J, Tenenbaum J B, Gan C. Learning physical dynamics with subequivariant graph neural networks. In: Proceedings of the 36th Conference on Neural Information Processing Systems. 2022

[26]

Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J, Battaglia P. Learning to simulate complex physics with graph networks. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 8459−8468

[27]

Kipf T, Fetaya E, Wang K C, Welling M, Zemel R. Neural relational inference for interacting systems. In: Proceedings of the 35th International Conference on Machine Learning. 2018, 2688−2697

[28]

Huang Y, Peng X, Ma J, Zhang M. 3DLinker: an E(3) equivariant variational autoencoder for molecular linker design. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 9280−9294

[29]

Guan J, Qian W W, Peng X, Su Y, Peng J, Ma J. 3D equivariant diffusion for target-aware molecule generation and affinity prediction. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[30]

Jing B, Corso G, Chang J, Barzilay R, Jaakkola T. Torsional diffusion for molecular conformer generation. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 1760

[31]

Wu L, Hou Z, Yuan J, Rong Y, Huang W. Equivariant spatio-temporal attentive graph networks to simulate physical dynamics. In: Proceedings of the 37th International Conference on Neural Information Processing System. 2023, 1965

[32]

Kong X, Huang W, Liu Y. Conditional antibody design as 3D equivariant graph translation. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[33]

Senior A W, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson A W R, Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones D T, Silver D, Kavukcuoglu K, Hassabis D . Improved protein structure prediction using potentials from deep learning. Nature, 2020, 577( 7792): 706–710

[34]

Chanussot L, Das A, Goyal S, Lavril T, Shuaibi M, Riviere M, Tran K, Heras-Domingo J, Ho C, Hu W, Palizhati A, Sriram A, Wood B, Yoon J, Parikh D, Zitnick C L, Ulissi Z . Open catalyst 2020 (OC20) dataset and community challenges. ACS Catalysis, 2021, 11( 10): 6059–6072

[35]

Kong X, Jia Y, Huang W, Liu Y. Full-atom peptide design with geometric latent diffusion. In: Proceedings of the 38th Conference on Neural Information Processing Systems. 2024

[36]

Duval A, Mathis S V, Joshi C K, Schmidt V, Miret S, Malliaros F D, Cohen T, Liò P, Bengio Y, Bronstein M. A hitchhiker’s guide to geometric GNNs for 3D atomic systems. 2024, arXiv preprint arXiv: 2312.07511

[37]

Xia J, Zhu Y, Du Y, Li S Z. A systematic survey of chemical pre-trained models. In: Proceedings of the 32nd International Joint Conference on Artificial Intelligence. 2023, 6787−6795

[38]

Guo Z, Guo K, Nan B, Tian Y, Iyer R G, Ma Y, Wiest O, Zhang X, Wang W, Zhang C, Chawla N V. Graph-based molecular representation learning. In: Proceedings of the 32nd International Joint Conference on Artificial Intelligence. 2023, 6638−6646.

[39]

Atz K, Grisoni F, Schneider G . Geometric deep learning on molecular representations. Nature Machine Intelligence, 2021, 3( 12): 1023–1032

[40]

Zhang X, Wang L, Helwig J, Luo Y, Fu C, , . Artificial intelligence for science in quantum, atomistic, and continuum systems. 2025, arXiv preprint arXiv: 2307.08423

[41]

Esteves C. Theoretical aspects of group equivariant neural networks. 2020, arXiv preprint arXiv: 2004.05154

[42]

Cederberg J. A course in modern geometries. Springer Science & Business Media, 2004

[43]

Wu Z, Pan S, Chen F, Long G, Zhang C, Philip S Y . A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32( 1): 4–24

[44]

Yuan Z, Wei Z, Lv F, Wen J R . Index-free triangle-based graph local clustering. Frontiers of Computer Science, 2024, 18( 3): 183404

[45]

Wu Z, Ramsundar B, Feinberg E N, Gomes J, Geniesse C, Pappu A S, Leswing K, Pande V . MoleculeNet: a benchmark for molecular machine learning. Chemical Science, 2018, 9( 2): 513–530

[46]

Villar S, Hogg D W, Storey-Fisher K, Yao W, Blum-Smith B. Scalars are universal: equivariant machine learning, structured like classical physics. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021

[47]

Schutt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R . SchNet–a deep learning architecture for molecules and materials. The Journal of Chemical Physics, 2018, 148( 24): 241722

[48]

Baek M, Anishchenko I, Humphreys I R, Cong Q, Baker D, DiMaio F. Efficient and accurate prediction of protein structure using RoseTTAFold2. bioRxiv, 2023

[49]

Luo Y, Liu C, Ji S. Towards symmetry-aware generation of periodic materials. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 36

[50]

Jiao R, Huang W, Lin P, Han J, Chen P, Lu Y, Liu Y. Crystal structure prediction by joint equivariant diffusion. In: Proceedings of the 37th International Conference on Neural Information Processing System. 2023, 767

[51]

Huang W, Han J, Rong Y, Xu T, Sun F, Huang J. Equivariant graph mechanics networks with constraints. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[52]

Gasteiger J, Giri S, Margraf J T, Günnemann S. Fast and uncertainty-aware directional message passing for non-equilibrium molecules. 2022, arXiv preprint arXiv: 2011.14115

[53]

Zhu F, Futrega M, Bao H, Eryilmaz S B, Kong F, Duan K, Zheng X, Angel N, Jouanneaux M, Stadler M, Marcinkiewicz M, Xie F, Yang J, Andersch M. FastDimeNet++: training DimeNet++ in 22 minutes. In: Proceedings of the 52nd International Conference on Parallel Processing. 2023, 274−284

[54]

Finzi M, Stanton S, Izmailov P, Wilson A G. Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 3165−3176

[55]

Liu Y, Wang L, Liu M, Lin Y, Zhang X, Oztekin B, Ji S. Spherical message passing for 3D molecular graphs. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[56]

Wang L, Liu Y, Lin Y, Liu H, Ji S. ComENet: towards complete and efficient message passing for 3D molecular graphs. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 47

[57]

Li Z, Wang X, Huang Y, Zhang M. Is distance matrix enough for geometric deep learning? In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 1627

[58]

Li Z, Wang X, Kang S, Zhang M. On the completeness of invariant geometric deep learning models. 2024, arXiv preprint arXiv: 2402.04836

[59]

Yue A, Luo D, Xu H. A plug-and-play quaternion message-passing module for molecular conformation representation. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. 2024, 16633−16641

[60]

Du W, Zhang H, Du Y, Meng Q, Chen W, Zheng N, Shao B, Liu T Y. SE(3) equivariant graph neural networks with complete local frames. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 5583−5608

[61]

Kofinas M, Nagaraja N S, Gavves E. Roto-translated local coordinate frames for interacting dynamical systems. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021

[62]

Kofinas M, Bekkers E J, Nagaraja N S, Gavves E. Latent field discovery in interacting dynamical systems with neural fields. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 1379

[63]

Kohler J, Klein L, Noé F. Equivariant flows: sampling configurations for multi-body systems with symmetric energies. 2019, arXiv preprint arXiv: 1910.00753

[64]

Jing B, Eismann S, Suriana P, Townshend R J L, Dror R O. Learning from protein structure with geometric vector perceptrons. In: Proceedings of the 9th International Conference on Learning Representations. 2021

[65]

Han J, Huang W, Xu T, Rong Y. Equivariant graph hierarchy-based neural networks. In: Proceedings of the 36th Conference on Neural Information Processing Systems. 2022

[66]

Zhang Y, Cen J, Han J, Zhang Z, Zhou J, Huang W. Improving equivariant graph neural networks on large geometric graphs via virtual nodes learning. In: Proceedings of the 41st International Conference on Machine Learning. 2024

[67]

Puny O, Atzmon M, Smith E J, Misra I, Grover A, Ben-Hamu H, Lipman Y. Frame averaging for invariant and equivariant network design. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[68]

Duval A A, Schmidt V, Hernández-Garcıa A, Miret S, Malliaros F D, Bengio Y, Rolnick D. FAENet: frame averaging equivariant GNN for materials modeling. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 9013−9033

[69]

Du W, Du Y, Wang L, Feng D, Wang G, Ji S, Gomes C P, Ma Z M. A new perspective on building efficient and expressive 3D equivariant graph neural networks. In: Proceedings of the 37th International Conference on Neural Information Processing System. 2023, 2910

[70]

Aykent S, Xia T. SaVeNet: a scalable vector network for enhanced molecular representation learning. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 1860

[71]

Wang Y, Wang T, Li S, He X, Li M, Wang Z, Zheng N, Shao B, Liu T Y . Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing. Nature Communications, 2024, 15( 1): 313

[72]

Wang Z, Liu G, Zhou Y, Wang T, Shao B. QuinNet: efficiently incorporating quintuple interactions into geometric deep learning force fields. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 3368

[73]

Cen J, Li A, Lin N, Ren Y, Wang Z, Huang W. Are high-degree representations really unnecessary in equivariant graph neural networks? In: Proceedings of the 38th Conference on Neural Information Processing Systems. 2024

[74]

Battiloro C, Karaismailoglu E, Tec M, Da-soulas G, Audirac M, Dominici F. E(n) equivariant topological neural networks. In: Proceedings of the Thirteenth International Conference on Learning Representations. 2025

[75]

Li Z, Cen J, Su B, Huang W, Xu T, Rong Y, Zhao D. Large language-geometry model: when LLM meets equivariance. 2025, arXiv preprint arXiv: 2502.11149

[76]

Anderson B, Hy T S, Kondor R. Cormorant: covariant molecular neural networks. In: Proceedings of the 33rd Conference on Neural Information Processing Systems. 2019

[77]

Musaelian A, Batzner S, Johansson A, Sun L, Owen C J, Kornbluth M, Kozinsky B . Learning local equivariant representations for large-scale atomistic dynamics. Nature Communications, 2023, 14( 1): 579

[78]

Zitnick C L, Das A, Kolluru A, Lan J, Shuaibi M, Sriram A, Ulissi Z, Wood B. Spherical channels for modeling atomic interactions. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 585

[79]

Passaro S, Zitnick C L. Reducing SO(3) convolutions to SO(2) for efficient equivariant GNNs. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 1140

[80]

Batatia I, Kovács D P, Simm G N C, Ortner C, Csányi G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. In: Proceedings of the 36th Conference on Neural Information Processing Systems. 2022, 11423−11436

[81]

Ying C, Cai T, Luo S, Zheng S, Ke G, He D, Shen Y, Liu T Y. Do transformers really perform bad for graph representation? In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021

[82]

Shi Y, Zheng S, Ke G, Shen Y, You J, He J, Luo S, Liu C, He D, Liu T Y. Benchmarking graphormer on large-scale molecular modeling datasets. 2023, arXiv preprint arXiv: 2203.04810

[83]

Thölke P, de Fabritiis G. Equivariant transformers for neural network based molecular potentials. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[84]

Hutchinson M J, Le Lan C, Zaidi S, Dupont E, Teh Y W, Kim H. Lietransformer: equivariant self-attention for Lie groups. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 4533−4543

[85]

Hsu C, Verkuil R, Liu J, Lin Z, Hie B, Sercu T, Lerer A, Rives A. Learning inverse folding from millions of predicted structures. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 8946−8970

[86]

Liao Y L, Wood B M, Das A, Smidt T E. EquiformerV2: improved equivariant transformer for scaling to higher-degree representations. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[87]

Wang Y, Li S, Wang T, Shao B, Zheng N, Liu T Y. Geometric transformer with interatomic positional encoding. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 36

[88]

Frank J T, Unke O T, Müller K R, Chmiela S . A Euclidean transformer for fast and stable machine learned force fields. Nature Communications, 2024, 15( 1): 6539

[89]

Aykent S, Xia T. GotenNet: rethinking efficient 3D equivariant graph neural networks. In: Proceedings of the 13th International Conference on Learning Representations. 2025

[90]

Jiao R, Kong X, Yu Z, Huang W, Liu Y. Equivariant pretrained transformer for unified geometric learning on multi-domain 3D molecules. 2025, arXiv preprint arXiv: 2402.12714v1

[91]

Ma H, Bian Y, Rong Y, Huang W, Xu T, Xie W, Ye G, Huang J . Cross-dependent graph neural networks for molecular property prediction. Bioinformatics, 2022, 38( 7): 2003–2009

[92]

Zhang M, Li P. Nested graph neural networks. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021, 15734−15747

[93]

Qin S, Zhang X, Xu H, Xu Y . Fast quaternion product units for learning disentangled representations in SO(3). IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45( 4): 4504–4520

[94]

Zhu X, Xu Y, Xu H, Chen C. Quaternion convolutional neural networks. In: Proceedings of the 15th European Conference on Computer Vision. 2018, 645−661

[95]

Zhang X, Qin S, Xu Y, Xu H. Quaternion product units for deep learning on 3D rotation groups. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, 7302−7311

[96]

Joshi C K, Bodnar C, Mathis S V, Cohen T, Liò P. On the expressive power of geometric graph neural networks. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 625

[97]

Gilmore R. Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and Chemists. Cambridge: Cambridge University Press, 2008

[98]

Müller C. Spherical Harmonics. Berlin: Springer, 2006

[99]

Griffiths D J, Schroeter D F. Introduction to Quantum Mechanics. Cambridge: Cambridge University Press, 2018

[100]

Weiler M, Geiger M, Welling M, Boomsma W, Cohen T. 3D steerable CNNs: learning rotationally equivariant features in volumetric data. In: Proceedings of the 32nd Conference on Neural Information Processing Systems. 2018, 31

[101]

Ramachandran P, Zoph B, Le Q V. Searching for activation functions. In: Proceedings of the 6th International Conference on Learning Representations. 2018

[102]

Drautz R . Atomic cluster expansion for accurate and transferable interatomic potentials. Physical Review B, 2019, 99( 1): 014104

[103]

Dusson G, Bachmayr M, Csányi G, Drautz R, Etter S, van der Oord C, Ortner C . Atomic cluster expansion: completeness, efficiency and stability. Journal of Computational Physics, 2022, 454: 110946

[104]

Bochkarev A, Lysogorskiy Y, Menon S, Qamar M, Mrovec M, Drautz R . Efficient parametrization of the atomic cluster expansion. Physical Review Materials, 2022, 6( 1): 013804

[105]

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 6000−6010

[106]

Yuan C, Zhao K, Kuruoglu E E, Wang L, Xu T, Huang W, Zhao D, Cheng H, Rong Y. A survey of graph transformers: Architectures, theories and applications. arXiv preprint arXiv: 2502.16533, 2025

[107]

Hu W, Fey M, Ren H, Nakata M, Dong Y, Leskovec J. OGB-LSC: a large-scale challenge for machine learning on graphs. In: Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks. 2021

[108]

Shuaibi M, Kolluru A, Das A, Grover A, Sriram A, Ulissi Z, Zitnick C L. Rotation invariant graph neural networks using spin convolutions. 2021, arXiv preprint arXiv: 2106.09575

[109]

Dym N, Maron H. On the universality of rotation equivariant point cloud networks. In: Proceedings of the 9th International Conference on Learning Representations. 2021

[110]

Weisfeiler B, Leman A . The reduction of a graph to canonical form and the algebra which appears therein. Nauchno-Technicheskaya Informatsia, 1968, 2( 9): 12–16

[111]

Lawrence H, Portilheiro V, Zhang Y, Kaba S O. Improving equivariant networks with probabilistic symmetry breaking. In: Proceedings of the Geometry-Grounded Representation Learning and Generative Modeling at 41st International Conference on Machine Learning. 2024

[112]

Battaglia P, Pascanu R, Lai M, Jimenez Rezende D, Kavukcuoglu K. Interaction networks for learning about objects, relations and physics. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016, 4509−4517

[113]

Sanchez-Gonzalez A, Bapst V, Cranmer K, Battaglia P. Hamiltonian graph networks with ode integrators. 2019, arXiv preprint arXiv: 1909.12790

[114]

Guo L, Wang W, Chen Z, Zhang N, Sun Z, Lai Y, Zhang Q, Chen H. Newton–cotes graph neural networks: on the time evolution of dynamic systems. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 36

[115]

Allen K R, Guevara T L, Rubanova Y, Stachenfeld K, Sanchez-Gonzalez A, Battaglia P, Pfaff T. Graph network simulators can learn discontinuous, rigid contact dynamics. In: Proceedings of the 6th Conference on Robot Learning. 2023, 1157−1167

[116]

Rubanova Y, Sanchez-Gonzalez A, Pfaff T, Battaglia P. Constraint-based graph network simulator. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 18844−18870

[117]

Wu T, Wang Q, Zhang Y, Ying R, Cao K, Sosic R, Jalali R, Hamam H, Maucec M, Leskovec J. Learning large-scale subsurface simulations with a hybrid graph network simulator. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022, 4184−4194

[118]

Li Y, Wu J, Tedrake R, Tenenbaum J B, Torralba A. Learning particle dynamics for manipulating rigid bodies, deformable objects, and fluids. In: Proceedings of the 7th International Conference on Learning Representations. 2019

[119]

Mrowca D, Zhuang C, Wang E, Haber N, Fei-Fei L, Tenenbaum J B, Yamins D L K. Flexible neural representation for physics prediction. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018, 8813−8824

[120]

Allen K R, Rubanova Y, Lopez-Guevara T, Whitney W, Sanchez-Gonzalez A, Battaglia P W, Pfaff T. Learning rigid dynamics with face interaction graph networks. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[121]

Xu C, Tan R T, Tan Y, Chen S, Wang Y G, Wang X, Wang Y. EqMotion: equivariant multi-agent motion prediction with invariant interaction reasoning. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 1410−1420

[122]

Liu Y, Cheng J, Zhao H, Xu T, Zhao P, Tsung F G, Li J, Rong Y. Improving generalization in equivariant graph neural networks with physical inductive biases. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[123]

Coors B, Condurache A P, Geiger A. SphereNet: learning spherical representations for detection and classification in omnidirectional images. In: Proceedings of the 15th European Conference on Computer Vision. 2018, 525−541

[124]

Wang X, Zhang M. Graph neural network with local frame for molecular potential energy surface. In: Proceedings of the 1st Learning on Graphs Conference. 2022, 19

[125]

Luo S, Chen T, Krishnapriyan A S. Enabling efficient equivariant operations in the Fourier basis via gaunt tensor products. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[126]

Köhler J, Klein L, Noe F. Equivariant flows: exact likelihood generative learning for symmetric densities. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 5361−5370

[127]

Xu M, Han J, Lou A, Kossaifi J, Ramanathan A, Azizzadenesheli K, Leskovec J, Ermon S, Anandkumar A. Equivariant graph neural operator for modeling 3D dynamics. In: Proceedings of the 41st International Conference on Machine Learning. 2024

[128]

Schreiner M, Winther O, Olsson S. Implicit transfer operator learning: multiple time-resolution surrogates for molecular dynamics. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 1582

[129]

Midgley L I, Stimper V, Antorán J, Mathieu E, Schölkopf B, Hernández-Lobato J M. SE(3) equivariant augmented coupling flows. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 3466

[130]

Han J, Xu M, Lou A, Ye H, Ermon S. Geometric trajectory diffusion models. In: Proceedings of the 38th Conference on Neural Information Processing Systems. 2024

[131]

Raja S, Amin I, Pedregosa F, Krishnapriyan A S. Stability-aware training of neural network interatomic potentials with differentiable Boltzmann estimators. 2025, arXiv preprint arXiv: 2402.13984v1

[132]

Amin I, Raja, Krishnapriyan A S. Towards fast, specialized machine learning force fields: distilling foundation models via energy hessians. In: Proceedings of the 13th International Conference on Learning Representations. 2025

[133]

Xu M, Yu L, Song Y, Shi C, Ermon S, Tang J. GeoDiff: a geometric diffusion model for molecular conformation generation. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[134]

Xu M, Powers A S, Dror R O, Ermon S, Leskovec J. Geometric latent diffusion models for 3D molecule generation. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 38592−38610

[135]

Xu M, Wang W, Luo S, Shi C, Bengio Y, Gomez-Bombarelli R, Tang J. An end-to-end framework for molecular conformation generation via bilevel programming. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 11537−11547

[136]

Shi C, Luo S, Xu M, Tang J. Learning gradient fields for molecular conformation generation. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 9558−9568

[137]

Gebauer N W A, Gastegger M, Schutt K T. Symmetry-adapted generation of 3D point sets for the targeted discovery of molecules. In: Proceedings of the 33rd Conference on Neural Information Processing Systems. 2019, 32

[138]

Gebauer N W A, Gastegger M, Hessmann S S P, Müller K R, Schütt K T . Inverse design of 3D molecular structures with conditional generative neural networks. Nature Communications, 2022, 13( 1): 973

[139]

Huang L, Zhang H, Xu T, Wong K C. MDM: molecular diffusion model for 3D molecule generation. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. 2023, 5105−5112

[140]

Peng X, Guan J, Liu Q, Ma J. MolDiff: addressing the atom-bond inconsistency problem in 3D molecule diffusion generation. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 27611−27629

[141]

Luo S, Shi C, Xu M, Tang J. Predicting molecular conformation via dynamic graph score matching. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021

[142]

Satorras V G, Hoogeboom E, Fuchs F B, Posner I, Welling M. E(n) equivariant normalizing flows. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. 2021, 320

[143]

Hoogeboom E, Satorras V G, Vignac C, Welling M. Equivariant diffusion for molecule generation in 3D. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 8867−8887

[144]

Ganea O E, Pattanaik L, Coley C W, Barzilay R, Jensen K F, Green W H, Jaakkola T S. GEOMOL: torsional geometric generation of molecular 3D conformer ensembles. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021

[145]

Wang F, Xu H, Chen X, Lu S, Deng Y, Huang W. MPerformer: an SE(3) transformer-based molecular perceptron. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. 2023, 2512−2522

[146]

Bao F, Zhao M, Hao Z, Li P, Li C, Zhu J. Equivariant energy-guided SDE for inverse molecular design. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[147]

Zhu J, Xia Y, Liu C, Wu L, Xie S, Wang Y, Wang T, Qin T, Zhou W, Li H, Liu H, Liu T Y. Direct molecular conformation generation. Transactions on Machine Learning Research, 2022, See openreview.net/forum?id=lCPOHiztuw website, 2022

[148]

Qiang B, Song Y, Xu M, Gong J, Gao B, Zhou H, Ma W Y, Lan Y. Coarse-to-fine: a hierarchical diffusion model for molecule generation in 3D. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 28277–28299

[149]

Song Y, Gong J, Xu M, Cao Z, Lan Y, Ermon S, Zhou H, Ma W Y. Equivariant flow matching with hybrid probability transport for 3D molecule generation. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 26

[150]

Reidenbach D, Krishnapriyan A S . Coarsenconf: equivariant coarsening with aggregated attention for molecular conformer generation. Journal of Chemical Information and Modeling, 2025, 65( 1): 22–30

[151]

Song Y, Gong J, Zhou H, Zheng M, Liu J, Ma W Y. Unified generative modeling of 3D molecules with Bayesian flow networks. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[152]

Qu Y, Qiu K, Song Y, Gong J, Han J, Zheng M, Zhou H, Ma W Y. MolCRAFT: structure-based drug design in continuous parameter space. In: Proceedings of the 41st International Conference on Machine Learning. 2024

[153]

Jiao R, Han J, Huang W, Rong Y, Liu Y. Energy-motivated equivariant pretraining for 3D molecular graphs. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. 2023, 8096−8104

[154]

Liu S, Guo H, Tang J. Molecular geometry pretraining with SE(3)-invariant denoising distance matching. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[155]

Liu S, Wang H, Liu W, Lasenby J, Guo H, Tang J. Pre-training molecular graph representation with 3D geometry. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[156]

Zaidi S, Schaarschmidt M, Martens J, Kim H, Teh Y W, Sanchez-Gonzalez A, Battaglia P W, Pascanu R, Godwin J. Pre-training via denoising for molecular property prediction. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[157]

Feng J, Wang Z, Li Y, Ding B, Wei Z, Xu H. MGMAE: molecular representation learning by reconstructing heterogeneous graphs with a high mask ratio. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 2022, 509−519

[158]

Stärk H, Beaini D, Corso G, Tossou P, Dallago C, Gunnemann S, Lió P. 3D infomax improves GNNs for molecular property prediction. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 20479−20502

[159]

Zhou G, Gao Z, Ding Q, Zheng H, Xu H, Wei Z, Zhang L, Ke G. Uni-Mol: a universal 3D molecular representation learning framework. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[160]

Luo S, Chen T, Xu Y, Zheng S, Liu T Y, Wang L, He D. One transformer can understand both 2D & 3D molecular data. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[161]

Liu S, Du W, Ma Z M, Guo H, Tang J. A group symmetric stochastic differential equation model for molecule multi-modal pretraining. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 21497–21526

[162]

Ni Y, Feng S, Ma W Y, Ma Z M, Lan Y. Sliced denoising: a physics-informed molecular pre-training method. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[163]

Feng S, Ni Y, Lan Y, Ma Z M, Ma W Y. Fractional denoising for 3D molecular pre-training. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 9938−9961

[164]

Liu Y, Chen J, Jiao R, Li J, Huang W, Su B. DenoiseVAE: learning molecule-adaptive noise distributions for denoising-based 3D molecular pre-training. In: Proceedings of the 13th International Conference on Learning Representations. 2025

[165]

Liu S, Rong Y, Zhao D, Liu Q, Wu S, Wang L. MolSpectra: pre-training 3D molecular representation with multi-modal energy spectra. In: Proceedings of the 13th International Conference on Learning Representations. 2025

[166]

Wang Z, Combs S A, Brand R, Calvo M R, Xu P, Price G, Golovach N, Salawu E O, Wise C J, Ponnapalli S P, Clark P M . LM-GVP: an extensible sequence and structure informed deep learning framework for protein property prediction. Scientific Reports, 2022, 12( 1): 6832

[167]

Gligorijević V, Renfrew P D, Kosciolek T, Leman J K, Berenberg D, Vatanen T, Chandler C, Taylor B C, Fisk I M, Vlamakis H, Xavier R J, Knight R, Cho K, Bonneau R . Structure-based protein function prediction using graph convolutional networks. Nature Communications, 2021, 12( 1): 3168

[168]

Zhang Z, Xu M, Jamasb A R, Chenthamarakshan V, Lozano A C, Das P, Tang J. Protein representation learning by geometric structure pretraining. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[169]

Torng W, Altman R B . 3D deep convolutional neural networks for amino acid environment similarity analysis. BMC Bioinformatics, 2017, 18( 1): 302

[170]

Zhang Y, Skolnick J . TM-align: a protein structure alignment algorithm based on the tm-score. Nucleic Acids Research, 2005, 33( 7): 2302–2309

[171]

Eismann S, Townshend R J L, Thomas N, Jagota M, Jing B, Dror R O . Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes. Proteins: Structure, Function, and Bioinformatics, 2021, 89( 5): 493–501

[172]

Eismann S, Suriana P, Jing B, Townshend R J L, Dror R O . Protein model quality assessment using rotation-equivariant transformations on point clouds. Proteins: Structure, Function, and Bioinformatics, 2023, 91( 8): 1089–1096

[173]

Chen C, Chen X, Morehead A, Wu T, Cheng J . 3D-equivariant graph neural networks for protein model quality assessment. Bioinformatics, 2023, 39( 1): btad030

[174]

Tubiana J, Schneidman-Duhovny D, Wolfson H J . ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction. Nature Methods, 2022, 19( 6): 730–739

[175]

Zhang Y, Wei Z, Yuan Y, Ding Z, Huang W. EquiPocket: an E(3)-equivariant geometric graph neural network for ligand binding site prediction. In: Proceedings of the 41st International Conference on Machine Learning. 2024

[176]

Meller A, Ward M D, Borowsky J H, Lotthammer J M, Kshirsagar M, Oviedo F, Ferres J L, Bowman G . Predicting the locations of cryptic pockets from single protein structures using the pocketminer graph neural network. Biophysical Journal, 2023, 122( 3Suppl): 445A

[177]

Ingraham J, Garg V K, Barzilay R, Jaakkola T. Generative models for graph-based protein design. In: Proceedings of the 33rd Conference on Neural Information Processing Systems. 2019, 32

[178]

Tan C, Gao Z, Xia J, Hu B, Li S Z. Generative de novo protein design with global context. 2023, arXiv preprint arXiv: 2204.10673

[179]

Dauparas J, Anishchenko I, Bennett N, Bai H, Ragotte R J, Milles L F, Wicky B I M, Courbet A, de Haas R J, Bethel N, Leung P J Y, Huddy T F, Pellock S, Tischer D, Chan F, Koepnick B, Nguyen H, Kang A, Sankaran B, Bera A K, King N P, Baker D . Robust deep learning–based protein sequence design using ProteinMPNN. Science, 2022, 378( 6615): 49–56

[180]

Gao Z, Tan C, Li S Z. PiFold: toward effective and efficient protein inverse folding. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[181]

Zheng Z, Deng Y, Xue D, Zhou Y, Ye F, Gu Q. Structure-informed language models are protein designers. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 1781

[182]

Gao Z, Tan C, Chen X, Zhang Y, Xia J, Li S, Li S Z. KW-Design: pushing the limit of protein design via knowledge refinement. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[183]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, . . Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596( 7873): 583–589

[184]

Krishna R, Wang J, Ahern W, Sturmfels P, Venkatesh P, . . Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science, 2024, 384( 6693): eadl2528

[185]

Jing B, Erives E, Pao-Huang P, Corso G, Berger B, Jaakkola T. EigenFold: generative protein structure prediction with diffusion models. In: Proceedings of the ICLR 2023-Machine Learning for Drug Discovery Workshop. 2023

[186]

Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R, Kabeli O, Shmueli Y, Dos Santos Costa A, Fazel-Zarandi M, Sercu T, Candido S, Rives A . Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 2023, 379( 6637): 1123–1130

[187]

Fang X, Wang F, Liu L, He J, Lin D, Xiang Y, Zhu K, Zhang X, Wu H, Li H, Song L . A method for multiple-sequence-alignment-free protein structure prediction using a protein language model. Nature Machine Intelligence, 2023, 5( 10): 1087–1096

[188]

Shi C, Wang C, Lu J, Zhong B, Tang J. Protein sequence and structure co-design with equivariant translation. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[189]

Yue A, Wang Z, Xu H. ReQFlow: rectified quaternion flow for efficient and high-quality protein backbone generation. 2025, arXiv preprint arXiv: 2502.14637

[190]

Elnaggar A, Heinzinger M, Dallago C, Rehawi G, Wang Y, Jones L, Gibbs T, Feher T, Angerer C, Steinegger M, Bhowmik D, Rost B . ProtTrans: toward understanding the language of life through self-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44( 10): 7112–7127

[191]

Chen B, Cheng X, Li P, Geng Y A, Gong J, Li S, Bei Z, Tan X, Wang B, Zeng X, Liu C, Zeng A, Dong Y, Tang J, Song L. xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein. 2024, arXiv preprint arXiv: 2401.06199

[192]

Ferruz N, Schmidt S, Höcker B . ProtGPT2 is a deep unsupervised language model for protein design. Nature Communications, 2022, 13( 1): 4348

[193]

Mansoor S, Baek M, Madan U, Horvitz E. Toward more general embeddings for protein design: harnessing joint representations of sequence and structure. bioRxiv, 2021

[194]

Gao B, Jia Y, Mo Y, Ni Y, Ma W Y, Ma Z M, Lan Y. Self-supervised pocket pretraining via protein fragment-surroundings alignment. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[195]

Wang Z, Zhang Q, Hu S, Yu H, Jin X, Gong Z, Chen H. Multi-level protein structure pre-training via prompt learning. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[196]

Gao B, Qiang B, Tan H, Ren M, Jia Y, Lu M, Liu J, Ma W Y, Lan Y. DrugCLIP: contrastive protein-molecule representation learning for virtual screening. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 36

[197]

Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M, Zitnick C L, Ma J, Fergus R . Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118( 15): e2016239118

[198]

Guo Y, Wu J, Ma H, Huang J. Self-supervised pre-training for protein embeddings using tertiary structures. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. 2022, 6801−6809

[199]

Yuan C, Li S, Ye G, Zhang Y, Huang L K, Huang W, Liu W, Yao J, Rong Y. Annotation-guided protein design with multi-level domain alignment. 2024, arXiv preprint arXiv: 2404.16866

[200]

Igashov I, St ¨ark H, Vignac C, Schneuing A, Satorras V G, Frossard P, Welling M, Bronstein M, Correia B. Equivariant 3d-conditional diffusion model for molecular linker design. Nature Machine Intelligence, 2024, 6(4): 417–427

[201]

Imrie F, Bradley A R, van der Schaar M, Deane C M . Deep generative models for 3D linker design. Journal of Chemical Information and Modeling, 2020, 60( 4): 1983–1995

[202]

Duan C, Du Y, Jia H, Kulik H J . Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model. Nature Computational Science, 2023, 3( 12): 1045–1055

[203]

Jackson R, Zhang W, Pearson J . TSNet: predicting transition state structures with tensor field networks and transfer learning. Chemical Science, 2021, 12( 29): 10022–10040

[204]

Gainza P, Sverrisson F, Monti F, Rodolà E, Boscaini D, Bronstein M M, Correia B E . Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nature Methods, 2020, 17( 2): 184–192

[205]

Kong X, Huang W, Liu Y. Generalist equivariant transformer towards 3D molecular interaction learning. In: Proceedings of the 41st International Conference on Machine Learning. 2024, 25149−25175

[206]

Wang L, Liu H, Liu Y, Kurtin J, Ji S. Learning hierarchical protein representations via complete 3D graph networks. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[207]

Zhao K, Rong Y, Jiang B, Tang J, Zhang H, Yu J X, Zhao P. Geometric graph learning for protein mutation effect prediction. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. 2023, 3412−3422

[208]

Feng S, Li M, Jia Y, Ma W Y, Lan Y. Protein-ligand binding representation learning from fine-grained interactions. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[209]

Jian Y, Wu C, Reidenbach D, Krishnapriyan A S. General binding affinity guidance for diffusion models in structure-based drug design. 2024, arXiv preprint arXiv: 2406.16821

[210]

Xue F, Zhang M, Li S, Gao X, Wohlschlegel J A, Huang W, Yang Y, Deng W. Se (3)-equivariant ternary complex prediction towards target protein degradation. arXiv preprint arXiv: 2502.18875, 2025

[211]

Stärk H, Ganea O, Pattanaik L, Barzilay D, Jaakkola T. EquiBind: geometric deep learning for drug binding structure prediction. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 20503−20521

[212]

Lu W, Wu Q, Zhang J, Rao J, Li C, Zheng S. TANKBind: trigonometry-aware neural networks for drug-protein binding structure prediction. In: Proceedings of the 36th Conference on Neural Information Processing Systems. 2022

[213]

Long S, Zhou Y, Dai X, Zhou H. Zero-shot 3D drug design by sketching and generating. In: Proceedings of the 36th Conference on Neural Information Processing Systems. 2022, 23894−23907

[214]

Pei Q, Gao K, Wu L, Zhu J, Xia Y, Xie S, Qin T, He K, Liu T Y, Yan R. FABind: fast and accurate protein-ligand binding. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023

[215]

Huang Y, Zhang O, Wu L, Tan C, Lin H, Gao Z, Li S, Li S Z. Re-Dock: towards flexible and realistic molecular docking with diffusion bridge. In: Proceedings of the 41st International Conference on Machine Learning. 2024

[216]

Peng X, Luo S, Guan J, Xie Q, Peng J, Ma J. Pocket2Mol: efficient molecular sampling based on 3D protein pockets. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 17644–17655

[217]

Lin H, Huang Y, Zhang O, Ma S, Liu M, Li X, Wu L, Wang J, Hou T, Li S Z. DiffBP: generative diffusion of 3D molecules for target protein binding. 2024, arXiv preprint arXiv: 2211.11214

[218]

Luo S, Guan J, Ma J, Peng J. A 3D generative model for structure-based drug design. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021

[219]

Liu M, Luo Y, Uchino K, Maruhashi K, Ji S. Generating 3D molecules for target protein binding. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 13912−13924

[220]

Zhang Z, Min Y, Zheng S, Liu Q. Molecule generation for target protein binding with structural motifs. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[221]

Lin H, Huang Y, Zhang O, Wu L, Li S, Chen Z, Li S Z. Functional-group-based diffusion for pocket-specific molecule generation and elaboration. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 36

[222]

Qiu K, Song Y, Yu J, Ma H, Cao Z, Zhang Z, Wu Y, Zheng M, Zhou H, Ma W Y. Structure-based molecule optimization via gradient-guided Bayesian update. 2024, arXiv preprint arXiv: 2411.13280

[223]

Pinheiro P O, Jamasb A, Mahmood O, Sresht V, Saremi S. Structure-based drug design by denoising voxel grids. In: Proceedings of the 41st International Conference on Machine Learning. 2024

[224]

Morehead A, Chen C, Cheng J. Geometric transformers for protein interface contact prediction. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[225]

Sverrisson F, Feydy J, Correia B E, Bronstein M M. Fast end-to-end learning on protein surfaces. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 15267−15276

[226]

Townshend R J L, Bedi R, Suriana P A, Dror R O. End-to-end learning on 3D protein structure for interface prediction. In: Proceedings of the 33rd Conference on Neural Information Processing Systems. 2019, 32

[227]

Rodrigues C H M, Pires D E V, Ascher D B . mmCSM-PPI: predicting the effects of multiple point mutations on protein–protein interactions. Nucleic Acids Research, 2021, 49( W1): W417–W424

[228]

Liu X, Luo Y, Li P, Song S, Peng J . Deep geometric representations for modeling effects of mutations on protein-protein binding affinity. PLoS Computational Biology, 2021, 17( 8): e1009284

[229]

Ganea O E, Huang X, Bunne C, Bian Y, Barzilay R, Jaakkola T S, Krause A. Independent SE(3)-equivariant models for end-to-end rigid protein docking. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[230]

Wang Y, Shen Y, Chen S, Wang L, Fei Y, Zhou H. Learning harmonic molecular representations on riemannian manifold. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[231]

Jin W, Barzilay R, Jaakkola T. Antibody-antigen docking and design via hierarchical structure refinement. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 10217–10227

[232]

Ketata M A, Laue C, Mammadov R, Stärk H, Wu M, Corso G, Marquet C, Barzilay R, Jaakkola T S. DiffDock-PP: rigid protein-protein docking with diffusion models. In: Proceedings of the ICLR 2023-Machine Learning for Drug Discovery Workshop. 2023

[233]

Ji Y, Bian Y, Fu G, Zhao P, Luo P. SyNDock: N rigid protein docking via learnable group synchronization. 2023, arXiv preprint arXiv: 2305.15156

[234]

Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, , . Protein complex prediction with alphafold-multimer. bioRxiv, 2021

[235]

Sverrisson F, Feydy J, Southern J, Bronstein M M, Correia B E. Physics-informed deep neural network for rigid-body protein docking. In: Proceedings of the MLDD 2022 - Machine Learning for Drug Discovery Workshop of ICLR 2022. 2022

[236]

Yu Z, Huang W, Liu Y. Rigid protein-protein docking via equivariant elliptic-paraboloid interface prediction. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[237]

Wu H, Liu W, Bian Y, Wu J, Yang N, Yan J. EBMDock: neural probabilistic protein-protein docking via a differentiable energy model. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[238]

Luo S, Su Y, Peng X, Wang S, Peng J, Ma J. Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 709

[239]

Jin W, Wohlwend J, Barzilay R, Jaakkola T S. Iterative refinement graph neural network for antibody sequence-structure co-design. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[240]

Gao K, Wu L, Zhu J, Peng T, Xia Y, He L, Xie S, Qin T, Liu H, He K, Liu T Y. Incorporating pre-training paradigm for antibody sequence-structure co-design. 2022, arXiv preprint arXiv: 2211.08406

[241]

Tan C, Gao Z, Wu L, XIA J, Zheng J, Yang X, Liu Y, Hu B, Li S Z. Cross-gate MLP with protein complex invariant embedding is a one-shot antibody designer. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. 2024, 15222−15230

[242]

Verma Y, Heinonen M, Garg V. AbODE: ab initio antibody design using conjoined ODEs. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 35037−35050

[243]

Martinkus K, Ludwiczak J, Cho K, Liang W C, Lafrance-Vanasse J, Hotzel I, Rajpal A, Wu Y, Bonneau R, Gligorijevic V, Loukas A. AbDiffuser: full-atom generation of in vitro functioning antibodies. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023

[244]

Wu F, Zhao Y, Wu J, Jiang B, He B, Huang L, Qin C, Yang F, Huang N, Xiao Y, Wang R, Jia H, Rong Y, Liu Y, Lai H, Xu T, Liu W, Zhao P, Yao J. Fast and accurate modeling and design of antibody-antigen complex using tFold. bioRxiv, 2024

[245]

Lin H, Wu L, Huang Y, Liu Y, Zhang O, Zhou Y, Sun R, Li S Z. GeoAB: towards realistic antibody design and reliable affinity maturation. In: Proceedings of the 41st International Conference on Machine Learning. 2024

[246]

Wu L, Lin H, Huang Y, Gao Z, Tan C, Liu Y, Wu T, Li S Z. Relation-aware equivariant graph networks for epitope-unknown antibody design and specificity optimization. 2024, arXiv preprint arXiv: 2501.00013

[247]

Xie X, Valiente P A, Kim P M . HelixGAN a deep-learning methodology for conditional de novo design of α-helix structures. Bioinformatics, 2023, 39( 1): btad036

[248]

Lin H, Zhang O, Zhao H, Jiang D, Wu L, Liu Z, Huang Y, Li S Z. PPFLOW: target-aware peptide design with torsional flow matching. In: Proceedings of the 41st International Conference on Machine Learning. 2024

[249]

Xie T, Grossman J C . Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Physical Review Letters, 2018, 120( 14): 145301

[250]

Chen C, Ye W, Zuo Y, Zheng C, Ong S P . Graph networks as a universal machine learning framework for molecules and crystals. Chemistry of Materials, 2019, 31( 9): 3564–3572

[251]

Choudhary K, DeCost B . Atomistic line graph neural network for improved materials property predictions. npj Computational Materials, 2021, 7( 1): 185

[252]

Kaba S O, Ravanbakhsh S. Equivariant networks for crystal structures. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 300

[253]

Yan K, Liu Y, Lin Y, Ji S. Periodic graph transformers for crystal material property prediction. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 1096

[254]

Magar R, Wang Y, Barati Farimani A . Crystal twins: self-supervised learning for crystalline material property prediction. npj Computational Materials, 2022, 8( 1): 231

[255]

Yu H, Song Y, Hu J, Guo C, Yang B. A crystal-specific pre-training framework for crystal material property prediction. 2023, arXiv preprint arXiv: 2306.05344

[256]

Song Z, Meng Z, King I. A diffusion-based pre-training framework for crystal property prediction. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. 2024, 8993−9001

[257]

Xie T, Fu X, Ganea O E, Barzilay R, Jaakkola T S. Crystal diffusion variational autoencoder for periodic material generation. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[258]

Jiao R, Huang W, Liu Y, Zhao D, Liu Y. Space group constrained crystal generation. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[259]

Zeni C, Pinsler R, Zügner D, Fowler A, Horton M, , . MatterGen: a generative model for inorganic materials design. 2024, arXiv preprint arXiv: 2312.03687

[260]

Li Q, Jiao R, Wu L, Zhu T, Huang W, Jin S, Liu Y, Weng H, Chen X. Powder diffraction crystal structure determination using generative models. 2024, arXiv preprint arXiv: 2409.04727

[261]

Lin P, Chen P, Jiao R, Mo Q, Cen J, Huang W, Liu Y, Huang D, Lu Y. Equivariant diffusion for crystal structure prediction. In: Proceedings of the 41st International Conference on Machine Learning. 2024, 1204

[262]

Miller B K, Chen R T Q, Sriram A, Wood B M. FlowMM: generating materials with riemannian flow matching. In: Proceedings of the 41st International Conference on Machine Learning. 2024

[263]

Wu H, Song Y, Gong J, Cao Z, Ouyang Y, Zhang J, Zhou H, Ma W Y, Liu J. A periodic Bayesian flow for material generation. In: Proceedings of the 13th International Conference on Learning Representations. 2025

[264]

Zhang S, Liu Y, Xie L. Physics-aware graph neural network for accurate RNA 3D structure prediction. 2023, arXiv preprint arXiv: 2210.16392

[265]

Li Z, Cen J, Huang W, Wang T, Song L. Size-generalizable RNA structure evaluation by exploring hierarchical geometries. In: Proceedings of the 13th International Conference on Learning Representations. 2025

[266]

Greff K, Belletti F, Beyer L, Doersch C, Du Y, , . Kubric: a scalable dataset generator. In: Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 3739–3751

[267]

Bear D, Wang E, Mrowca D, Binder F J, Tung H Y, Pramod R T, Holdaway C, Tao S, Smith K A, Sun F Y, Li F F, Kanwisher N, Tenenbaum J, Yamins D, Fan J E. Physion: evaluating physical prediction from vision in humans and machines. In: Proceedings of the 1st Neural Information Processing Systems Track on Datasets and Benchmarks. 2021

[268]

Yu K T, Bauza M, Fazeli N, Rodriguez A. More than a million ways to be pushed. A high-fidelity experimental dataset of planar pushing. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2016, 30−37

[269]

Townshend R J L, Vogele M, Suriana P, Derry A, Powers A S, Laloudakis Y, Balachandar S, Jing B, Anderson B M, Eismann S, Kondor R, Altman R B, Dror R O. ATOM3D: tasks on molecules in three dimensions. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021

[270]

Xu M, Luo S, Bengio Y, Peng J, Tang J. Learning neural generative dynamics for molecular conformation generation. In: Proceedings of the 9th International Conference on Learning Representations. 2021

[271]

Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T, Müller K R . Machine learning of accurate energy-conserving molecular force fields. Science Advances, 2017, 3( 5): e1603015

[272]

Tran R, Lan J, Shuaibi M, Wood B M, Goyal S, Das A, Heras-Domingo J, Kolluru A, Rizvi A, Shoghi N, Sriram A, Therrien F, Abed J, Voznyy O, Sargent E H, Ulissi Z, Zitnick C L . The open catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts. ACS Catalysis, 2023, 13( 5): 3066–3084

[273]

Seyler S, Beckstein O. Molecular dynamics trajectory for benchmarking MDanalysis. 2017

[274]

Lindorff-Larsen K, Piana S, Dror R O, Shaw D E . How fast-folding proteins fold. Science, 2011, 334( 6055): 517–520

[275]

Axelrod S, Gómez-Bombarelli R . GEOM, energy-annotated molecular conformations for property prediction and molecular generation. Scientific Data, 2022, 9( 1): 185

[276]

Wang X, Zhao H, Tu W W, Yao Q. Automated 3D pre-training for molecular property prediction. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023, 2419−2430

[277]

Isert C, Atz K, Jimenez-Luna J, Schneider G . QMugs, quantum mechanical properties of drug-like molecules. Scientific Data, 2022, 9( 1): 273

[278]

Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G . Gene ontology: tool for the unification of biology. Nature Genetics, 2000, 25( 1): 25–29

[279]

Bairoch A . The ENZYME database in 2000. Nucleic Acids Research, 2000, 28( 1): 304–305

[280]

Orengo C A, Michie A D, Jones S, Jones D T, Swindells M B, Thornton J M . CATH–a hierarchic classification of protein domain structures. Structure, 1997, 5( 8): 1093–1109

[281]

Xue Y, Liu Z, Fang X, Wang F. Multimodal pre-training model for sequence-based prediction of protein-protein interaction. In: Proceedings of the 16th Machine Learning in Computational Biology Meeting. 2022, 34−46

[282]

Chandonia J M, Fox N K, Brenner S E . SCOPe: classification of large macromolecular structures in the structural classification of proteins—extended database. Nucleic Acids Research, 2019, 47( D1): D475–D481

[283]

Heinzinger M, Weissenow K, Sanchez J G, Henkel A, Steinegger M, Rost B. ProstT5: bilingual language model for protein sequence and structure. bioRxiv, 2023

[284]

Bepler T, Berger B . Learning the protein language: evolution, structure, and function. Cell Systems, 2021, 12( 6): 654–669

[285]

Rao R, Bhattacharya N, Thomas N, Duan Y, Chen P, Canny J, Abbeel P, Song Y S. Evaluating protein transfer learning with TAPE. In: Proceedings of the 33rd Conference on Neural Information Processing Systems. 2019, 32

[286]

Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, . . AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 2022, 50( D1): D439–D444

[287]

Gao Z, Tan C, Li S Z. AlphaDesign: a graph protein design method and benchmark on AlphaFoldDB. 2022, arXiv preprint arXiv: 2202.01079

[288]

Consortium T U . UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Research, 2023, 51( D1): D523–D531

[289]

Almagro Armenteros J J, Sønderby C K, Sønderby S K, Nielsen H, Winther O . DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics, 2017, 33( 21): 3387–3395

[290]

Steinegger M, Söding J . Clustering huge protein sequence sets in linear time. Nature Communications, 2018, 9( 1): 2542

[291]

Klausen M S, Jespersen M C, Nielsen H, Jensen K K, Jurtz V I, Sønderby C K, Sommer M O A, Winther O, Nielsen M, Petersen B, Marcatili P . NetSurfP-2. 0: improved prediction of protein structural features by integrated deep learning. Proteins: Structure, Function, and Bioinformatics, 2019, 87( 6): 520–527

[292]

Xu M, Zhang Z, Lu J, Zhu Z, Zhang Y, Chang M, Liu R, Tang J. Peer: a comprehensive and multi-task benchmark for protein sequence understanding. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 2548

[293]

Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J . Critical assessment of methods of protein structure prediction (CASP)—round XIII. Proteins: Structure, Function, and Bioinformatics, 2019, 87( 12): 1011–1020

[294]

Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E . The protein data bank. Nucleic Acids Research, 2000, 28( 1): 235–242

[295]

Sterling T, Irwin J J . ZINC 15 – ligand discovery for everyone. Journal of Chemical Information and Modeling, 2015, 55( 11): 2324–2337

[296]

Su M, Yang Q, Du Y, Feng G, Liu Z, Li Y, Wang R . Comparative assessment of scoring functions: the CASF-2016 update. Journal of Chemical Information and Modeling, 2019, 59( 2): 895–913

[297]

Schreiner M, Bhowmik A, Vegge T, Busk J, Winther O . Transition1x-a dataset for building generalizable reactive machine learning potentials. Scientific Data, 2022, 9( 1): 779

[298]

Francoeur P G, Masuda T, Sunseri J, Jia A, Iovanisci R B, Snyder I, Koes D R . Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design. Journal of Chemical Information and Modeling, 2020, 60( 9): 4200–4215

[299]

Morehead A, Chen C, Sedova A, Cheng J . Dips-plus: the enhanced database of interacting protein structures for interface prediction. Scientific Data, 2023, 10( 1): 509

[300]

Stark C, Breitkreutz B J, Reguly T, Boucher L, Breitkreutz A, Tyers M . BioGRID: a general repository for interaction datasets. Nucleic Acids Research, 2006, 34( S1): D535–D539

[301]

Hallee L, Gleghorn J P. Protein-protein interaction prediction is achievable with large language models. bioRxiv, 2023

[302]

Vreven T, Moal I H, Vangone A, Pierce B G, Kastritis P L, Torchala M, Chaleil R, Jiménez-García B, Bates P A, Fernandez-Recio J, Bonvin A M J J, Weng Z . Updates to the integrated protein– protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2. Journal of Molecular Biology, 2015, 427( 19): 3031–3041

[303]

Jankauskaitė J, Jiménez-García B, Dapkūnas J, Fernández-Recio J, Moal I H . SKEMPI 2. 0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics, 2019, 35( 3): 462–469

[304]

Raybould M I J, Kovaltsuk A, Marks C, Deane C M . CoV-AbDab: the coronavirus antibody database. Bioinformatics, 2021, 37( 5): 734–735

[305]

Wen Z, He J, Tao H, Huang S Y . PepBDB: a comprehensive structural database of biological peptide–protein interactions. Bioinformatics, 2019, 35( 1): 175–177

[306]

Lei Y, Li S, Liu Z, Wan F, Tian T, Li S, Zhao D, Zeng J . A deep-learning framework for multi-level peptide–protein interaction prediction. Nature Communications, 2021, 12( 1): 5465

[307]

Tsaban T, Varga J K, Avraham O, Ben-Aharon Z, Khramushin A, Schueler-Furman O . Harnessing protein folding neural networks for peptide–protein docking. Nature Communications, 2022, 13( 1): 176

[308]

Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A . Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Materials, 2013, 1( 1): 011002

[309]

Castelli I E, Landis D D, Thygesen K S, Dahl S, Chorkendorff I, Jaramillo T F, Jacobsen K W . New cubic perovskites for one- and two-photonwater splitting using the computational materials repository. Energy and Environmental Science, 2012, 5( 10): 9034–9043

[310]

Castelli I E, Olsen T, Datta S, Landis D D, Dahl S, Thygesen K S, Jacobsen K W . Computational screening of perovskite metal oxides for optimal solar light capture. Energy and Environmental Science, 2012, 5( 2): 5814–5819

[311]

Pickard C J. AIRSS data for carbon at 10GPa and the C+N+H+O system at 1GPa. 2020

[312]

Choudhary K, Garrity K F, Reid A C E, DeCost B, Biacchi A J, . . The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Computational Materials, 2020, 6( 1): 173

[313]

Choudhary K, DeCost B, Tavazza F . Machine learning with force-field-inspired descriptors for materials: fast screening and mapping energy landscape. Physical Review Materials, 2018, 2( 8): 083801

[314]

Watkins A M, Rangan R, Das R . FARFAR2: improved de novo Rosetta prediction of complex global RNA folds. Structure, 2020, 28( 8): 963–976.e6

[315]

Liu Y, Cheng J, Zhao H, Xu T, Zhao P, Tsung F, Li J, Rong Y. SEGNO: generalizing equivariant graph neural networks with physical inductive biases. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[316]

Downs G M, Gillet V J, Holliday J D, Lynch M F . Review of ring perception algorithms for chemical graphs. Journal of Chemical Information and Computer Sciences, 1989, 29( 3): 172–187

[317]

Lipinski C A, Lombardo F, Dominy B W, Feeney P J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 2012, 64 Suppl 1: 4−17

[318]

Gowers R J, Linke M, Barnoud J, Reddy T J E, Melo M N, Seyler S L, Domanski J J, Dotson D L, Buchoux S, Kenney I M, Beckstein O. MDAnalysis: a python package for the rapid analysis of molecular dynamics simulations. In: Proceedings of the 15th Python in Science Conference. 2016, 105

[319]

Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015, 234−241

[320]

Huang C W, Dinh L, Courville A. Augmented normalizing flows: bridging the gap between generative flows and latent variable models. 2020, arXiv preprint arXiv: 2002.07101

[321]

Liberti L, Lavor C, Maculan N, Mucherino A . Euclidean distance geometry and applications. SIAM Review, 2014, 56( 1): 3–69

[322]

Kingma D P, Welling M. Auto-encoding variational Bayes. In: Proceedings of the 2nd International Conference on Learning Representations. 2014, 1050

[323]

Wang L, Song C, Liu Z, Rong Y, Liu Q, Wu S, Wang L. Diffusion models for molecules: a survey of methods and tasks. 2025, arXiv preprint arXiv: 2502.09511

[324]

Wang S, Guo Y, Wang Y, Sun H, Huang J. SMILES-BERT: large scale unsupervised pre-training for molecular property prediction. In: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. 2019, 429−436

[325]

Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V S, Leskovec J. Strategies for pre-training graph neural networks. In: Proceedings of the 8th International Conference on Learning Representations. 2020

[326]

Rong Y, Bian Y, Xu T, Xie W, Wei Y, Huang W, Huang J. Self-supervised graph transformer on large-scale molecular data. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 1053

[327]

Hu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, Catasta M, Leskovec J. Open graph benchmark: datasets for machine learning on graphs. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 1855

[328]

Nakata M, Shimazaki T . PubChemQC project: a large-scale first-principles electronic structure database for data-driven chemistry. Journal of Chemical Information and Modeling, 2017, 57( 6): 1300–1308

[329]

Pracht P, Bohle F, Grimme S . Automated exploration of the low-energy chemical space with fast quantum chemical methods. Physical Chemistry Chemical Physics, 2020, 22( 14): 7169–7192

[330]

Hung M C, Link W . Protein localization in disease and therapy. Journal of Cell Science, 2011, 124( 20): 3381–3392

[331]

Dallago C, Mou J, Johnston K E, Wittmann B J, Bhattacharya N, Goldman S, Madani A, Yang K K. FLIP: benchmark tasks in fitness landscape inference for proteins. bioRxiv, 2021

[332]

Krivák R, Hoksza D . Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features. Journal of Cheminformatics, 2015, 7: 12

[333]

Le Guilloux V, Schmidtke P, Tuffery P . Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics, 2009, 10: 168

[334]

Jiménez J, Doerr S, Martínez-Rosell G, Rose A S, De Fabritiis G . DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 2017, 33( 19): 3036–3042

[335]

Mylonas S K, Axenopoulos A, Daras P . DeepSurf: a surface-based deep learning approach for the prediction of ligand binding sites on proteins. Bioinformatics, 2021, 37( 12): 1681–1690

[336]

Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, dos Santos Costa A, Fazel-Zarandi M, Sercu T, Candido S, Rives A. Language models of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv, 2022

[337]

Suzek B E, Wang Y, Huang H, McGarvey P B, Wu C H, Consortium U . UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics, 2015, 31( 6): 926–932

[338]

Rao R, Meier J, Sercu T, Ovchinnikov S, Rives A. Transformer protein language models are unsupervised structure learners. In: Proceedings of the 9th International Conference on Learning Representations. 2021

[339]

Wu L, Huang Y, Lin H, Li S Z. A survey on protein representation learning: retrospect and prospect. 2022, arXiv preprint arXiv: 2301.00813

[340]

Hussain J, Rea C . Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. Journal of Chemical Information and Modeling, 2010, 50( 3): 339–348

[341]

Lin H, Huang Y, Zhang O, Wu L, Li S, Chen Z, Li S Z. Functional-group-based diffusion for pocket-specific molecule generation and elaboration. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 1504

[342]

Wang R, Fang X, Lu Y, Wang S . The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. Journal of Medicinal Chemistry, 2004, 47( 12): 2977–2980

[343]

Kastritis P L, Moal I H, Hwang H, Weng Z, Bates P A, Bonvin A M J J, Janin J . A structure-based benchmark for protein–protein binding affinity. Protein Science, 2011, 20( 3): 482–491

[344]

Moal I H, Fernández-Recio J . SKEMPI: a structural kinetic and energetic database of mutant protein interactions and its use in empirical models. Bioinformatics, 2012, 28( 20): 2600–2607

[345]

Fosgerau K, Hoffmann T . Peptide therapeutics: current status and future directions. Drug Discovery Today, 2015, 20( 1): 122–128

[346]

Lee A C L, Harris J L, Khanna K K, Hong J H . A comprehensive review on current advances in peptide drug development and design. International Journal of Molecular Sciences, 2019, 20( 10): 2383

[347]

Bhardwaj G, Mulligan V K, Bahl C D, Gilmore J M, Harvey P J, . . Accurate de novo design of hyperstable constrained peptides. Nature, 2016, 538( 7625): 329–335

[348]

Cao L, Coventry B, Goreshnik I, Huang B, Sheffler W, . . Design of protein-binding proteins from the target structure alone. Nature, 2022, 605( 7910): 551–560

[349]

Zbontar J, Jing L, Misra I, LeCun Y, Deny S. Barlow twins: self-supervised learning via redundancy reduction. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 12310–12320

[350]

Chen X, He K. Exploring simple Siamese representation learning. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 15745−15753

[351]

Geiger M, Smidt T. e3nn: Euclidean neural networks. 2022, arXiv preprint arXiv: 2207.09453

[352]

Das R, Baker D . Automated de novo prediction of native-like RNA tertiary structures. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104( 37): 14664–14669

[353]

Radford A, Narasimhan K, Salimans T, Sutskever I. Improving language understanding by generative pre-training. 2018

[354]

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I . Language models are unsupervised multitask learners. OpenAI Blog, 2019, 1( 8): 9

[355]

Brown T B, Mann B, Ryder N, Subbiah M, Kaplan J, , . Language models are few-shot learners. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 159

[356]

Reed S, Zolna K, Parisotto E, Colmenarejo S G, Novikov A, Barth-Maron G, Giménez M, Sulsky Y, Kay J, Springenberg J T, Eccles T, Bruce J, Razavi A, Edwards A, Heess N, Chen Y, Hadsell R, Vinyals O, Bordbar M, de Freitas N. A generalist agent. Transactions on Machine Learning Research, 2022, See openreview.net/forum?id=1ikK0kHjvj website, 2022

[357]

Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G, Cubuk E D . Scaling deep learning for materials discovery. Nature, 2023, 624( 7990): 80–85

[358]

Bran A M, Cox S, Schilter O, Baldassari C, White A D, Schwaller P . Augmenting large language models with chemistry tools. Nature Machine Intelligence, 2024, 6( 5): 525–535

[359]

Liu X, Yu H, Zhang H, Xu Y, Lei X, , . AgentBench: evaluating LLMs as agents. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[360]

Janakarajan N, Erdmann T, Swaminathan S, Laino T, Born J. Language models in molecular discovery. In: Satoh H, Funatsu K, Yamamoto H, eds. Drug Development Supported by Informatics. Singapore: Springer, 2024, 121−141

[361]

Liu S, Wang J, Yang Y, Wang C, Liu L, Guo H, Xiao C. Conversational drug editing using retrieval and domain feedback. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[362]

Zhang W, Wang X, Nie W, Eaton J, Rees B, Gu Q. MoleculeGPT: instruction following large language models for molecular property prediction. In: Proceedings of NeurIPS 2023 Workshop on New Frontiers of AI for Drug Discovery and Development. 2023

[363]

Zheng Z, Liu Y, Li J, Yao J, Rong Y. Relaxing continuous constraints of equivariant graph neural networks for physical dynamics learning. In: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2024

[364]

Liu Y, Zheng Z, Rong Y, Li J. Equivariant graph learning for high-density crowd trajectories modeling. Transactions on Machine Learning Research, See openreview.net/forum?id=TeQRze2ZjO website, 2024

RIGHTS & PERMISSIONS

The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (2173KB)

Supplementary files

Highlights

918

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/