PDF
(4064KB)
Abstract
Controllability has become a crucial aspect of trustworthy machine learning, enabling learners to meet predefined targets and adapt dynamically at test time without requiring retraining as the targets shift. We provide a formal definition of controllable learning (CL), and discuss its applications in information retrieval (IR) where information needs are often complex and dynamic. The survey categorizes CL according to what is controllable (e.g., multiple objectives, user portrait, scenario adaptation), who controls (users or platforms), how control is implemented (e.g., rule-based method, Pareto optimization, hypernetwork, and others), and where to implement control (e.g., pre-processing, in-processing, post-processing methods). Then, we identify challenges faced by CL across training, evaluation, task setting, and deployment in online environments. Additionally, we outline promising directions for CL in theoretical analysis, efficient computation, empowering large language models, application scenarios, and evaluation frameworks.
Graphical abstract
Keywords
controllable learning
/
information retrieval
/
model adaptation
Cite this article
Download citation ▾
Chenglei SHEN, Xiao ZHANG, Teng SHI, Changshuo ZHANG, Guofu XIE, Jun XU, Ming HE, Jianping FAN.
A survey of controllable learning: methods and applications in information retrieval.
Front. Comput. Sci., 2026, 20(10): 2010619 DOI:10.1007/s11704-025-41366-5
| [1] |
Toreini E, Aitken M, Coopamootoo K, Elliott K, Zelaya C G, Van Moorsel A. The relationship between trust in AI and trustworthy machine learning technologies. In: Proceedings of 2020 Conference on Fairness, Accountability, and Transparency. 2020, 272–283
|
| [2] |
Eshete B . Making machine learning trustworthy. Science, 2021, 373( 6556): 743–744
|
| [3] |
Wang J, Li H, Wang H, Pan S J, Xie X. Trustworthy machine learning: Robustness, generalization, and interpretability. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023, 5827–5828
|
| [4] |
Zhang X, Shi T, Xu J, Dong Z, Wen J R . Model-agnostic causal embedding learning for counterfactually group-fair recommendation. IEEE Transactions on Knowledge and Data Engineering, 2024,
|
| [5] |
Wiener N . Some moral and technical consequences of automation. Science, 1960, 131( 3410): 1355–1358
|
| [6] |
Keskar N S, McCann B, Varshney L R, Xiong C, Socher R. Ctrl: A conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858, 2019
|
| [7] |
Hu Z, Yang Z, Liang X, Salakhutdinov R, Xing E P. Toward controlled generation of text. In: Proceedings of the 34th International Conference on Machine Learning. 2017, 1587–1596
|
| [8] |
Zhou W, Jiang Y E, Wilcox E, Cotterell R, Sachan M. Controlled text generation with natural language instructions. In: Proceedings of the 41st International Conference on Machine Learning. 2023, 42602–42613
|
| [9] |
Epstein D, Jabri A, Poole B, Efros A, Holynski A . Diffusion self-guidance for controllable image generation. Advances in Neural Information Processing Systems, 2023, 36: 16222–16239
|
| [10] |
Li D, Li J, Hoi S . Blip-diffusion: Pre-trained subject representation for controllable text-to-image generation and editing. Advances in Neural Information Processing Systems, 2024, 36:
|
| [11] |
Chen W, Ji Y, Wu J, Wu H, Xie P, Li J, Xia X, Xiao X, Lin L. Control-a-video: Controllable text-to-video generation with diffusion models. arXiv preprint arXiv:2305.13840, 2023
|
| [12] |
Galanti T, Wolf L . On the modularity of hypernetworks. Advances in Neural Information Processing Systems, 2020, 33: 10409–10419
|
| [13] |
Garcia-Molina H, Koutrika G, Parameswaran A . Information seeking: Convergence of search, recommendations, and advertising. Communications of the ACM, 2011, 54( 11): 121–130
|
| [14] |
Xu J, He X, Li H. Deep learning for matching in search and recommendation. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018, 1365–1368
|
| [15] |
Shi T, Si Z, Xu J, Zhang X, Zang X, Zheng K, Leng D, Niu Y, Song Y. Unisar: Modeling user transition behaviors between search and recommendation. In: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2024, 1029–1039
|
| [16] |
Shi T, Xu J, Zhang X, Zang X, Zheng K, Song Y, Yu E. Unified generative search and recommendation. arXiv preprint arXiv:2504.05730, 2025
|
| [17] |
Zhang C, Shi T, Zhang X, Zheng Y, Xie R, Liu Q, Xu J, Wen J R. Qagcf: Graph collaborative filtering for q&a recommendation. arXiv preprint arXiv:2406.04828, 2024
|
| [18] |
Zhao W X, Zhou K, Li J, Tang T, Wang X, Hou Y, Min Y, Zhang B, Zhang J, Dong Z, others . A survey of large language models. arXiv preprint arXiv:2303.18223, 2023
|
| [19] |
Cusumano M . Cloud computing and SaaS as new computing platforms. Communications of the ACM, 2010, 53( 4): 27–29
|
| [20] |
Gan W, Wan S, Philip S Y. Model-as-a-service (MaaS): A survey. In: Proceedings of 2023 IEEE International Conference on Big Data. 2023, 4636–4645
|
| [21] |
Qin W, Xu Y, Yu W, Shen C, He M, Fan J, Zhang X, Xu J. Maps: Motivation-aware personalized search via llm-driven consultation alignment. arXiv preprint arXiv:2503.01711, 2025
|
| [22] |
Xie G, Zhang X, Yao T, Shi Y. Bone soups: A seek-and-soup model merging approach for controllable multi-objective generation. arXiv preprint arXiv:2502.10762, 2025
|
| [23] |
Jannach D, Naveed S, Jugovac M. User control in recommender systems: Overview and interaction challenges. In: E-Commerce and Web Technologies: 17th International Conference, EC-Web 2016, Porto, Portugal, September 5-8, 2016, Revised Selected Papers 17. 2017, 21–33
|
| [24] |
Ge Y, Liu S, Fu Z, Tan J, Li Z, Xu S, Li Y, Xian Y, Zhang Y . A survey on trustworthy recommender systems. ACM Transactions on Recommender Systems, 2022,
|
| [25] |
Zhang Y, Chen X, others . Explainable recommendation: A survey and new perspectives. Foundations and Trends® in Information Retrieval, 2020, 14( 1): 1–101
|
| [26] |
Anand A, Lyu L, Idahl M, Wang Y, Wallat J, Zhang Z. Explainable information retrieval: A survey. arXiv preprint arXiv:2211.02405, 2022
|
| [27] |
Cen Y, Zhang J, Zou X, Zhou C, Yang H, Tang J. Controllable multi-interest framework for recommendation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020, 2942–2951
|
| [28] |
Wang W, Feng F, Nie L, Chua T S. User-controllable recommendation against filter bubbles. In: Proceedings of the 45th international ACM SIGIR conference on research and development in information retrieval. 2022, 1251–1261
|
| [29] |
Chen S, Wang Y, Wen Z, Li Z, Zhang C, Zhang X, Lin Q, Zhu C, Xu J. Controllable multi-objective re-ranking with policy hypernetworks. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023, 3855–3864
|
| [30] |
Shen C, Zhao J, Zhang X, Yu W, He M, Fan J. Generating model parameters for controlling: Parameter diffusion for controllable multi-task recommendation. arXiv preprint arXiv:2410.10639, 2024
|
| [31] |
Lu W, Lian J, Zhang W, Li G, Zhou M, Liao H, Xie X. Aligning large language models for controllable recommendations. arXiv preprint arXiv:2403.05063, 2024
|
| [32] |
Mysore S, Jasim M, McCallum A, Zamani H. Editable user profiles for controllable text recommendations. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023, 993–1003
|
| [33] |
Wang L, Chen X, Dong Z, Dai Q. Would you like your data to be trained? a user controllable recommendation framework. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 21673–21680
|
| [34] |
Penaloza E, Gouvert O, Wu H, Charlin L. Tears: Textual representations for scrutable recommendations. arXiv preprint arXiv:2410.19302, 2024
|
| [35] |
Gou Y, Yao Y, Zhang Z, Wu Y, Hu Y, Zhuang F, Liu J, Xu Y. Controllable multi-behavior recommendation for in-game skins with large sequential model. In: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2024, 4986–4996
|
| [36] |
Tan J, Ge Y. User-controllable recommendation via counterfactual retrospective and prospective explanations. In: Proceedings of the 26th European Conference on Artificial Intelligence. 2023
|
| [37] |
Shen C, Zhang X, Wei W, Xu J. Hyperbandit: Contextual bandit with hypernewtork for time-varying user preferences in streaming recommendation. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. 2023, 2239–2248
|
| [38] |
Li X, Yan F, Zhao X, Wang Y, Chen B, Guo H, Tang R. Hamur: Hyper adapter for multi-domain recommendation. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. 2023, 1268–1277
|
| [39] |
Chang J, Zhang C, Hui Y, Leng D, Niu Y, Song Y, Gai K. Pepnet: Parameter and embedding personalized network for infusing with personalized prior information. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023, 3795–3804
|
| [40] |
Nema P, Karatzoglou A, Radlinski F. Disentangling preference representations for recommendation critiquing with ß-vae. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 2021, 1356–1365
|
| [41] |
Luo K, Sanner S, Wu G, Li H, Yang H. Latent linear critiquing for conversational recommender systems. In: Proceedings of The Web Conference 2020. 2020, 2535–2541
|
| [42] |
Gao Z, Zhou J, Dai Y, Joachims T. End-to-end training for recommendation with language-based user profiles. arXiv preprint arXiv:2410.18870, 2024
|
| [43] |
Wu Y, Macdonald C, Ounis I. Goal-oriented multi-modal interactive recommendation with verbal and non-verbal relevance feedback. In: Proceedings of the 17th ACM Conference on Recommender Systems. 2023, 362–373
|
| [44] |
Weller O, Van Durme B, Lawrie D, Paranjape A, Zhang Y, Hessel J. Promptriever: Instruction-trained retrievers can be prompted like language models. arXiv preprint arXiv:2409.11136, 2024
|
| [45] |
Xu W, Shi Y, Liang Z, Ning X, Mei K, Wang K, Zhu X, Xu M, Zhang Y. Instructagent: Building user controllable recommender via llm agent. arXiv preprint arXiv:2502.14662, 2025
|
| [46] |
Zhang T, Yang L, Xiao Z, Jiang W, Ning W. On practical diversified recommendation with controllable category diversity framework. arXiv preprint arXiv:2402.03801, 2024
|
| [47] |
Li Z, Dong Y, Gao C, Zhao Y, Li D, Hao J, Zhang K, Li Y, Wang Z. Breaking filter bubble: A reinforcement learning framework of controllable recommender system. In: Proceedings of the ACM Web Conference 2023. 2023, 4041–4049
|
| [48] |
Huan Z, Li A, Zhang X, Min X, Yang J, He Y, Zhou J. Samd: An industrial framework for heterogeneous multi-scenario recommendation. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023, 4175–4184
|
| [49] |
Liu Q, Zhou Z, Jiang G, Ge T, Lian D. Deep task-specific bottom representation network for multi-task recommendation. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. 2023, 1637–1646
|
| [50] |
Nandy P, Diciccio C, Venugopalan D, Logan H, Basu K, El Karoui N. Achieving fairness via post-processing in webscale recommender systems. In: Proceedings of 2022 ACM Conference on Fairness, Accountability, and Transparency. 2022, 715–725
|
| [51] |
Le N L, Abel M H, Gouspillou P. Combining embedding-based and semantic-based models for post-hoc explanations in recommender systems. In: 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2023, 4619–4624
|
| [52] |
Antikacioglu A, Ravi R. Post processing recommender systems for diversity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017, 707–716
|
| [53] |
Hoang L P, Le D D, Tuan T A, Thang T N. Improving pareto front learning via multi-sample hypernetworks. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 7875–7883
|
| [54] |
Navon A, Shamsian A, Chechik G, Fetaya E. Learning the pareto front with hypernetworks. arXiv preprint arXiv:2010.04104, 2020
|
| [55] |
Ruchte M, Grabocka J. Scalable pareto front approximation for deep multi-objective learning. In: 2021 IEEE international conference on data mining (ICDM). 2021, 1306–1311
|
| [56] |
Lin X, Yang Z, Zhang Q, Kwong S. Controllable pareto multi-task learning. 2020
|
| [57] |
Ma P, Du T, Matusik W. Efficient continuous pareto exploration in multi-task learning. In: International Conference on Machine Learning. 2020, 6522–6531
|
| [58] |
Lin X, Chen H, Pei C, Sun F, Xiao X, Sun H, Zhang Y, Ou W, Jiang P. A pareto-efficient algorithm for multiple objective optimization in e-commerce recommendation. In: Proc. of RecSys. 2019
|
| [59] |
He Y, Zheng S, Tay Y, Gupta J, Du Y, Aribandi V, Zhao Z, Li Y, Chen Z, Metzler D, others . Hyperprompt: Prompt-based task-conditioning of transformers. In: International conference on machine learning. 2022, 8678–8690
|
| [60] |
Killingback J, Zeng H, Zamani H. Hypencoder: Hypernetworks for information retrieval. arXiv preprint arXiv:2502.05364, 2025
|
| [61] |
Asai A, Schick T, Lewis P, Chen X, Izacard G, Riedel S, Hajishirzi H, Yih W t. Task-aware retrieval with instructions. arXiv preprint arXiv:2211.09260, 2022
|
| [62] |
Su H, Shi W, Kasai J, Wang Y, Hu Y, Ostendorf M, Yih W t, Smith N A, Zettlemoyer L, Yu T. One embedder, any task: Instruction-finetuned text embeddings. arXiv preprint arXiv:2212.09741, 2022
|
| [63] |
Weller O, Chang B, MacAvaney S, Lo K, Cohan A, Van Durme B, Lawrie D, Soldaini L. Followir: Evaluating and teaching information retrieval models to follow instructions. arXiv preprint arXiv:2403.15246, 2024
|
| [64] |
Oh H, Lee H, Ye S, Shin H, Jang H, Jun C, Seo M. Instructir: A benchmark for instruction following of information retrieval models. arXiv preprint arXiv:2402.14334, 2024
|
| [65] |
Carbonell J, Goldstein J. The use of mmr, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval. 1998, 335–336
|
| [66] |
Järvelin K, Kekäläinen J . Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems (TOIS), 2002, 20( 4): 422–446
|
| [67] |
Clarke C L, Kolla M, Cormack G V, Vechtomova O, Ashkan A, Büttcher S, MacKinnon I. Novelty and diversity in information retrieval evaluation. In: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. 2008, 659–666
|
| [68] |
Yan L, Qin Z, Pasumarthi R K, Wang X, Bendersky M. Diversification-aware learning to rank using distributed representation. In: Proceedings of the Web Conference 2021. 2021, 127–136
|
| [69] |
Audet C, Bigeon J, Cartier D, Le Digabel S, Salomon L . Performance indicators in multiobjective optimization. European journal of operational research, 2021, 292( 2): 397–422
|
| [70] |
Guerreiro A P, Fonseca C M, Paquete L. The hypervolume indicator: Problems and algorithms. arXiv preprint arXiv:2005.00515, 2020
|
| [71] |
Ni J, Li J, McAuley J. Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In: Proceedings of 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP). 2019, 188–197
|
| [72] |
Hou Y, Li J, He Z, Yan A, Chen X, McAuley J. Bridging language and items for retrieval and recommendation. arXiv preprint arXiv:2403.03952, 2024
|
| [73] |
Zhou G, Zhu X, Song C, Fan Y, Zhu H, Ma X, Yan Y, Jin J, Li H, Gai K. Deep interest network for click-through rate prediction. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. 2018, 1059–1068
|
| [74] |
Nguyen T, Rosenberg M, Song X, Gao J, Tiwary S, Majumder R, Deng L. Ms marco: A human-generated machine reading comprehension dataset. 2016
|
| [75] |
Chauhan V K, Zhou J, Lu P, Molaei S, Clifton D A. A brief review of hypernetworks in deep learning. arXiv preprint arXiv:2306.06955, 2023
|
| [76] |
Pan S J, Yang Q . A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 2009, 22( 10): 1345–1359
|
| [77] |
Weiss K, Khoshgoftaar T M, Wang D . A survey of transfer learning. Journal of Big data, 2016, 3: 1–40
|
| [78] |
Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q . A comprehensive survey on transfer learning. Proceedings of the IEEE, 2020, 109( 1): 43–76
|
| [79] |
Zhang L, Lu S, Zhou Z H . Adaptive online learning in dynamic environments. Advances in neural information processing systems, 2018, 31
|
| [80] |
Wan Y, Xue B, Zhang L. Projection-free online learning in dynamic environments. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 10067–10075
|
| [81] |
Zhao P, Yan Y H, Wang Y X, Zhou Z H . Non-stationary online learning with memory and non-stochastic control. The Journal of Machine Learning Research, 2023, 24( 1): 9831–9900
|
| [82] |
Jin Y, Cardoso B D L R P, Verbert K. How do different levels of user control affect cognitive load and acceptance of recommendations? In: IntRS@ RecSys. 2017, 35–42
|
| [83] |
Acs G, Melis L, Castelluccia C, De Cristofaro E . Differentially private mixture of generative neural networks. IEEE Transactions on Knowledge and Data Engineering, 2018, 31( 6): 1109–1121
|
| [84] |
Bindschaedler V, Shokri R, Gunter C A. Plausible deniability for privacy-preserving data synthesis. arXiv preprint arXiv:1708.07975, 2017
|
| [85] |
Cunningham T, Cormode G, Ferhatosmanoglu H. Privacy-preserving synthetic location data in the real world. In: Proceedings of the 17th International Symposium on Spatial and Temporal Databases. 2021, 23–33
|
| [86] |
Kulesza A, Taskar B, others . Determinantal point processes for machine learning. Foundations and Trends® in Machine Learning, 2012, 5( 2-3): 123–286
|
| [87] |
Lin X, Zhen H L, Li Z, Zhang Q F, Kwong S . Pareto multi-task learning. Advances in neural information processing systems, 2019, 32
|
| [88] |
Xie R, Liu Y, Zhang S, Wang R, Xia F, Lin L. Personalized approximate pareto-efficient recommendation. In: Proceedings of the Web Conference 2021. 2021, 3839–3849
|
| [89] |
Ge Y, Zhao X, Yu L, Paul S, Hu D, Hsieh C C, Zhang Y. Toward pareto efficient fairness-utility trade-off in recommendation through reinforcement learning. In: Proceedings of the 15th ACM international conference on web search and data mining. 2022, 316–324
|
| [90] |
Ha D, Dai A, Le Q V. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016
|
| [91] |
Mahabadi R K, Ruder S, Dehghani M, Henderson J. Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks. arXiv preprint arXiv:2106.04489, 2021
|
| [92] |
Bhargav S, Kanoulas E. Controllable recommenders using deep generative models and disentanglement. arXiv preprint arXiv:2110.05056, 2021
|
| [93] |
Wang H, Zhou C, Yang C, Yang H, He J. Controllable gradient item retrieval. In: Proceedings of the Web Conference 2021. 2021, 768–777
|
| [94] |
Qin W, Xu Y, Yu W, Shen C, Zhang X, He M, Fan J, Xu J. Enhancing sequential recommendations through multi-perspective reflections and iteration. arXiv preprint arXiv:2409.06377, 2024
|
| [95] |
Zhang C, Chen S, Zhang X, Dai S, YuW, Xu J. Reinforcing long-term performance in recommender systems with user-oriented exploration policy. In: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2024, 1850–1860
|
| [96] |
Gao C, Huang K, Fei Z, Chen J, Chen J, Sun J, Liu S, Cai Q, Jiang P. Future-conditioned recommendations with multiobjective controllable decision transformer. arXiv preprint arXiv:2501.07212, 2025
|
| [97] |
Chen J, Gao C, Yuan S, Liu S, Cai Q, Jiang P. Dlcrec: A novel approach for managing diversity in llm-based recommender systems. arXiv preprint arXiv:2408.12470, 2024
|
| [98] |
Zhang C, Zhang X, Shi T, Xu J, Wen J R. Test-time alignment for tracking user interest shifts in sequential recommendation. arXiv preprint arXiv:2504.01489, 2025
|
| [99] |
Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J, Huang Y, Cohen I . Pearson correlation coefficient. Noise reduction in speech processing, 2009, 1–4
|
| [100] |
Zar J H . Spearman rank correlation. Encyclopedia of biostatistics, 2005, 7
|
| [101] |
Li Y, Chen H, Xu S, Ge Y, Tan J, Liu S, Zhang Y. Fairness in recommendation: A survey. arXiv preprint arXiv:2205.13619, 2022
|
| [102] |
Wang Y, Ma W, Zhang M, Liu Y, Ma S . A survey on the fairness of recommender systems. ACM Transactions on Information Systems, 2023, 41( 3): 1–43
|
| [103] |
Silveira T, Zhang M, Lin X, Liu Y, Ma S . How good your recommender system is? a survey on evaluations in recommendation. International Journal of Machine Learning and Cybernetics, 2019, 10: 813–831
|
| [104] |
Hansen M P, Jaszkiewicz A. Evaluating the quality of approximations to the non-dominated set. IMM, Department of Mathematical Modelling, Technical Universityof Denmark . . ., 1994
|
| [105] |
Van Veldhuizen D A, Lamont G B . Multiobjective evolutionary algorithm research: A history and analysis. Technical report, Citeseer, 1998,
|
| [106] |
Coello Coello C A, Reyes Sierra M. A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: MICAI 2004: Advances in Artificial Intelligence: Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30, 2004. Proceedings 3. 2004, 688–697
|
| [107] |
Zhu H, Li X, Zhang P, Li G, He J, Li H, Gai K. Learning tree-based deep model for recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018, 1079–1088
|
RIGHTS & PERMISSIONS
Higher Education Press