Pairwise statistical comparisons of multiple algorithms

Bin-Bin JIA , Jun-Ying LIU , Min-Ling ZHANG

Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (12) : 1912372

PDF (253KB)
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (12) : 1912372 DOI: 10.1007/s11704-025-41325-0
Artificial Intelligence
LETTER

Pairwise statistical comparisons of multiple algorithms

Author information +
History +
PDF (253KB)

Graphical abstract

Cite this article

Download citation ▾
Bin-Bin JIA, Jun-Ying LIU, Min-Ling ZHANG. Pairwise statistical comparisons of multiple algorithms. Front. Comput. Sci., 2025, 19(12): 1912372 DOI:10.1007/s11704-025-41325-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma Z, Chen S . Multi-dimensional classification via a metric approach. Neurocomputing, 2018, 275: 1121–1131

[2]

Zhou D W, Yang Y, Zhan D C . Learning to classify with incremental new class. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33( 6): 2429–2443

[3]

Yang Y, Zhang C, Song X, Dong Z, Zhu H, Li W . Contextualized knowledge graph embedding for explainable talent training course recommendation. ACM Transactions on Information Systems, 2024, 42( 2): 33

[4]

Demšar J . Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 2006, 7: 1–30

[5]

García S, Herrera F . An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. Journal of Machine Learning Research, 2008, 9( 89): 2677–2694

[6]

Bogatinovski J, Todorovski L, Džeroski S, Kocev D . Comprehensive comparative study of multi-label classification methods. Expert Systems with Applications, 2022, 203: 117215

[7]

Jia B B, Liu J Y, Zhang M L . Towards exploiting linear regression for multi-class/multi-label classification: an empirical analysis. International Journal of Machine Learning and Cybernetics, 2024, 15( 9): 3671–3700

[8]

Jia B B, Liu J Y, Zhang M L. Instance-specific loss-weighted decoding for decomposition-based multiclass classification. IEEE Transactions on Neural Networks and Learning Systems, 2024, doi: 10.1109/TNNLS.2024.3454598

[9]

Benavoli A, Corani G, Mangili F . Should we really use post-hoc tests based on mean-ranks?. Journal of Machine Learning Research, 2016, 17( 1): 152–161

[10]

Ren L, Jiang L, Zhang W, Li C . Label distribution similarity-based noise correction for crowdsourcing. Frontiers of Computer Science, 2024, 18( 5): 185323

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (253KB)

Supplementary files

Highlights

541

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/