AirWSeg: a comprehensive dataset collection for pulmonary airway segmentation in medical imaging

Kexin ZHOU , Linkuan ZHOU , Fei GUO , Aihong LU , Wu FANG , Qiangguo JIN

Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (2) : 2002702

PDF (465KB)
Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (2) : 2002702 DOI: 10.1007/s11704-025-41308-1
Code & Data
LETTER

AirWSeg: a comprehensive dataset collection for pulmonary airway segmentation in medical imaging

Author information +
History +
PDF (465KB)

Graphical abstract

Cite this article

Download citation ▾
Kexin ZHOU, Linkuan ZHOU, Fei GUO, Aihong LU, Wu FANG, Qiangguo JIN. AirWSeg: a comprehensive dataset collection for pulmonary airway segmentation in medical imaging. Front. Comput. Sci., 2026, 20(2): 2002702 DOI:10.1007/s11704-025-41308-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng H, Qin Y, Gu Y, Xie F, Yang J, Sun J, Yang G Z . Alleviating class-wise gradient imbalance for pulmonary airway segmentation. IEEE Transactions on Medical Imaging, 2021, 40( 9): 2452–2462

[2]

Wang A, Tam T C C, Poon H M, Yu K C, Lee W N. Naviairway: a bronchiole-sensitive deep learning-based airway segmentation pipeline for planning of navigation bronchoscopy. 2023, arXiv preprint arXiv: 2203.04294v1

[3]

Qin Y, Gu Y, Zheng H, Chen M, Yang J, Zhu Y M. AirwayNet-SE: a simple-yet-effective approach to improve airway segmentation using context scale fusion. In: Proceedings of the 17th IEEE International Symposium on Biomedical Imaging. 2020, 809–813

[4]

Lo P, van Ginneken B, Reinhardt J M, Yavarna T, de Jong P A, Irving B, Fetita C, Ortner M, Pinho R, Sijbers J, Feuerstein M, Fabijanska A, Bauer C, Beichel R, Mendoza C S, Wiemker R, Lee J, Reeves A P, Born S, Weinheimer O, van Rikxoort E M, Tschirren J, Mori K, Odry B, Naidich D P, Hartmann I, Hoffman E A, Prokop M, Pedersen J H, de Bruijne M . Extraction of airways from CT (EXACT’09). IEEE Transactions on Medical Imaging, 2012, 31( 11): 2093–2107

[5]

Zhang M, Wu Y, Zhang H, Qin Y, Zheng H, Tang W, Arnold C, Pei C, Yu P, Nan Y, Yang G, Walsh S, Marshall D C, Komorowski M, Wang P, Guo D, Jin D, Wu Y, Zhao S, Hang R, Gu U . Multi-site, multi-domain airway tree modeling. Medical Image Analysis, 2023, 90: 102957

[6]

Armato III S G, McLennan G, Bidaut L, McNitt-Gray M F, Meyer C R, . . The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Medical Physics, 2011, 38( 2): 915–931

[7]

Qin Y, Zheng H, Gu Y, Huang X, Yang J, Wang L, Zhu Y M. Learning bronchiole-sensitive airway segmentation CNNs by feature recalibration and attention distillation. In: Proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention. 2020, 221–231

[8]

Støverud K H, Bouget D, Pedersen A, Leira H O, Amundsen T, Langø T, Hofstad E F . AeroPath: an airway segmentation benchmark dataset with challenging pathology and baseline method. PLoS One, 2024, 19( 10): e0311416

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (465KB)

Supplementary files

Highlights

490

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/