CCA: collaborative competitive agents for image editing

Tiankai HANG , Shuyang GU , Dong CHEN , Xin GENG , Baining GUO

Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (11) : 1911367

PDF (8317KB)
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (11) : 1911367 DOI: 10.1007/s11704-025-41244-0
Artificial Intelligence
RESEARCH ARTICLE

CCA: collaborative competitive agents for image editing

Author information +
History +
PDF (8317KB)

Abstract

This paper presents a novel generative model, Collaborative Competitive Agents (CCA), which leverages the capabilities of multiple Large Language Models (LLMs) based agents to execute complex tasks. Drawing inspiration from Generative Adversarial Networks (GANs), the CCA system employs two equal-status generator agents and a discriminator agent. The generators independently process user instructions and generate results, while the discriminator evaluates the outputs, and provides feedback for the generator agents to further reflect and improve the generation results. Unlike the previous generative model, our system can obtain the intermediate steps of generation. This allows each generator agent to learn from other successful executions due to its transparency, enabling a collaborative competition that enhances the quality and robustness of the system’s results. The primary focus of this study is image editing, demonstrating the CCA’s ability to handle intricate instructions robustly. The paper’s main contributions include the introduction of a multi-agent-based generative model with controllable intermediate steps and iterative optimization, a detailed examination of agent relationships, and comprehensive experiments on image editing.

Graphical abstract

Keywords

image editing / agents / collaborative and competitive

Cite this article

Download citation ▾
Tiankai HANG, Shuyang GU, Dong CHEN, Xin GENG, Baining GUO. CCA: collaborative competitive agents for image editing. Front. Comput. Sci., 2025, 19(11): 1911367 DOI:10.1007/s11704-025-41244-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

OpenAI. Gpt-4v(ision) system card. See api.semanticscholar.org/CorpusID:263218031} website, 2023

[2]

OpenAI, Achiam J, Adler S, Agarwal S, Ahmad L, , . Gpt-4 technical report. 2023, arXiv preprint arXiv: 2303.08774

[3]

Ouyang L, Wu J, Jiang X, Almeida D, Wainwright C L, Mishkin P, Zhang C, Agarwal S, Slama K, Ray A, Schulman J, Hilton J, Kelton F, Miller L, Simens M, Askell A, Welinder P, Christiiano P, Leike J, Lowe R. Training language models to follow instructions with human feedback. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 2011

[4]

Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M A, Lacroix T, Rozière B, Goyal N, Hambro E, Azhar F, Rodriguez A, Joulin A, Grave E, Lample G. LLaMA: open and efficient foundation language models. 2023, arXiv preprint arXiv: 2302.13971

[5]

Touvron H, Martin L, Stone K, Albert P, Almahairi A, , . Llama 2: open foundation and fine-tuned chat models. 2023, arXiv preprint arXiv: 2307.09288

[6]

Yao S, Chen H, Yang J, Narasimhan K. WebShop: towards scalable real-world web interaction with grounded language agents. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 1508

[7]

Qian C, Cong X, Liu W, Yang C, Chen W, Su Y, Dang Y, Li J, Xu J, Li D, Liu Z, Sun M. Communicative agents for software development. 2023, arXiv preprint arXiv:2307.07924

[8]

Swan M, Kido T, Roland E, dos Santos R P. Math agents: computational infrastructure, mathematical embedding, and genomics. 2023, arXiv preprint arXiv: 2307.02502

[9]

Kalvakurthi V, Varde A S, Jenq J. Hey Dona! Can you help me with student course registration? 2023, arXiv preprint arXiv: 2303.13548

[10]

Park J S, O’Brien J, Cai C J, Morris M R, Liang P, Bernstein M S. Generative agents: interactive simulacra of human behavior. In: Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology. 2023, 2

[11]

Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2014, 2672–2680

[12]

Brock A, Donahue J, Simonyan K. Large scale GAN training for high fidelity natural image synthesis. In: Proceedings of the 7th International Conference on Learning Representations. 2019

[13]

Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. In: Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 4401–4410

[14]

Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and improving the image quality of StyleGAN. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020

[15]

Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 574

[16]

Song Y, Sohl-Dickstein J, Kingma D P, Kumar A, Ermon S, Poole B. Score-based generative modeling through stochastic differential equations. In: Proceedings of the 9th International Conference on Learning Representations. 2021

[17]

Dhariwal P, Nichol A. Diffusion models beat GANs on image synthesis. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. 2021, 672

[18]

Karras T, Aittala M, Aila T, Laine S. Elucidating the design space of diffusion-based generative models. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 1926

[19]

Podell D, English Z, Lacey K, Blattmann A, Dockhorn T, Müller J, Penna J, Rombach R. SDXL: improving latent diffusion models for high-resolution image synthesis. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[20]

Nichol A Q, Dhariwal P. Improved denoising diffusion probabilistic models. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 8162–8171

[21]

Hang T, Gu S, Geng X, Guo B. Improved noise schedule for diffusion training. 2024, arXiv preprint arXiv: 2407.03297

[22]

Wang T, Yang Q, Wang R, Sun D, Li J, Chen Y, Hu Y, Yang C, Kimura T, Kara D, Abdelzaher T F. Fine-grained control of generative data augmentation in IoT sensing. In: Proceedings of the 38th Annual Conference on Neural Information Processing Systems. 2024

[23]

Brooks T, Holynski A, Efros A A. InstructPix2Pix: learning to follow image editing instructions. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 18392–18402

[24]

Hertz A, Mokady R, Tenenbaum J, Aberman K, Pritch Y, Cohen-Or D. Prompt-to-prompt image editing with cross-attention control. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[25]

Meng C, He Y, Song Y, Song J, Wu J, Zhu J Y, Ermon S. SDEdit: guided image synthesis and editing with stochastic differential equations. In: Proceedings of the 10th International Conference on Learning Representations. 2022

[26]

Sutton R S, Barto A G. Reinforcement Learning: An Introduction. 2nd ed. Cambridge: MIT Press, 2018

[27]

Xi Z, Chen W, Guo X, He W, Ding Y, . . The rise and potential of large language model based agents: a survey. Science China Information Sciences, 2025, 68( 2): 121101

[28]

Weng L. LLM powered autonomous agents. See Lilianweng.github.io website, 2023

[29]

Deng Q, Yang Q, Yuan R, Huang Y, Wang Y, Liu X, Tian Z, Pan J, Zhang G, Lin H, Li Y, Ma Y, Fu J, Lin C, Benetos E, Wang W, Xia G, Xue W, Guo Y. ComposerX: multi-agent symbolic music composition with LLMs. In: Proceedings of the 25th International Society for Music Information Retrieval Conference. 2024

[30]

Schick T, Dwivedi-Yu J, Dessì R, Raileanu R, Lomeli M, Hambro E, Zettlemoyer L, Cancedda N, Scialom T. Toolformer: language models can teach themselves to use tools. In: Proceedings of the 36th Annual Conference on Neural Information Processing Systems. 2023

[31]

Wu Y, Yang X . A glance at in-context learning. Frontiers of Computer Science, 2024, 18( 5): 185347

[32]

Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E H, Le Q V, Zhou D. Chain-of-thought prompting elicits reasoning in large language models. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 1800

[33]

Yao S, Zhao J, Yu D, Du N, Shafran I, Narasimhan K R, Cao Y. ReAct: synergizing reasoning and acting in language models. In: Proceedings of the 11th International Conference on Learning Representations. 2023

[34]

Madaan A, Tandon N, Gupta P, Hallinan S, Gao L, Wiegreffe S, Alon U, Dziri N, Prabhumoye S, Yang Y, Gupta S, Majumder B P, Hermann K, Welleck S, Yazdanbakhsh A, Clark P. SELF-REFINE: iterative refinement with self-feedback. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 2019

[35]

Yang Z, Wang J, Li L, Lin K, Lin C C, Liu Z, Wang L. Idea2img: iterative self-refinement with GPT-4V for automatic image design and generation. In: Proceedings of the 18th European Conference on Computer Vision. 2025

[36]

Shen Y, Song K, Tan X, Li D, Lu W, Zhuang Y. HuggingGPT: solving AI tasks with ChatGPT and its friends in hugging face. In: Proceedings of the 37th Annual Conference on Neural Information Processing Systems. 2023

[37]

Driess D, Xia F, Sajjadi M S M, Lynch C, Chowdhery A, Ichter B, Wahid A, Tompson J, Vuong Q, Yu T, Huang W, Chebotar Y, Sermanet P, Duckworth D, Levine S, Vanhoucke V, Hausman K, Toussaint M, Greff K, Zeng A, Mordatch I, Florence P. PaLM-E: an embodied multimodal language model. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 340

[38]

Li G, Hammoud H A A K, Itani H, Khizbullin D, Ghanem B. CAMEL: communicative agents for ”mind” exploration of large language model society. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 2264

[39]

Chen W, Su Y, Zuo J, Yang C, Yuan C, Chan C M, Qin Y, Lu Y, Hung Y H, Qian C, Qin Y, Cong X, Xie R, Liu Z, Sun M, Zhou J. AgentVerse: facilitating multi-agent collaboration and exploring emergent behaviors. 2023, arXiv preprint arXiv: 2308.10848

[40]

Chan C M, Chen W, Su Y, Yu J, Xue W, Zhang S, Fu J, Liu Z. ChatEval: towards better LLM-based evaluators through multi-agent debate. In: Proceedings of the 12th International Conference on Learning Representations. 2024

[41]

Geng Z, Yang B, Hang T, Li C, Gu S, Zhang T, Bao J, Zhang Z, Li H, Hu H, Chen D, Guo B. InstructDiffusion: a generalist modeling interface for vision tasks. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024

[42]

Hang T, Yang H, Liu B, Fu J, Geng X, Guo B . Language-guided face animation by recurrent styleGAN-based generator. IEEE Transactions on Multimedia, 2023, 25: 9216–9227

[43]

Mokady R, Hertz A, Aberman K, Pritch Y, Cohen-Or D. Null-text inversion for editing real images using guided diffusion models. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 6038–6047

[44]

Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution. In: Proceedings of the 14th European Conference on Computer Vision. 2016, 694–711

[45]

Gatys L A, Ecker A S, Bethge M. Image style transfer using convolutional neural networks. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016, 2414–2423

[46]

Gu S, Chen C, Liao J, Yuan L. Arbitrary style transfer with deep feature reshuffle. In: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018, 8222–8231

[47]

Ding Z, Li P, Yang Q, Li S, Gong Q. Regional style and color transfer. In: Proceedings of the 5th International Conference on Computer Vision, Image and Deep Learning. 2024, 593–597

[48]

Zhu J Y, Park T, Isola P, Efros A A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of 2017 IEEE International Conference on Computer Vision. 2017, 2223–2232

[49]

Isola P, Zhu J Y, Zhou T, Efros A A. Image-to-image translation with conditional adversarial networks. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017, 1125–1134

[50]

Bertalmio M, Sapiro G, Caselles V, Ballester C. Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. 2000, 417–424

[51]

Criminisi A, Perez P, Toyama K. Object removal by exemplar-based inpainting. In: Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2003

[52]

Sun J, Yuan L, Jia J, Shum H Y. Image completion with structure propagation. In: Proceedings of the ACM SIGGRAPH 2005 Papers. 2005, 861–868

[53]

Yang B, Gu S, Zhang B, Zhang T, Chen X, Sun X, Chen D, Wen F. Paint by example: exemplar-based image editing with diffusion models. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 18381–18391

[54]

Zhang K, Mo L, Chen W, Sun H, Su Y. MagicBrush: a manually annotated dataset for instruction-guided image editing. In: Proceedings of the 37th Annual Conference on Neural Information Processing Systems. 2023

[55]

Xia W, Zhang Y, Yang Y, Xue J H, Zhou B, Yang M H . GAN inversion: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45( 3): 3121–3138

[56]

Shen Y, Gu J, Tang X, Zhou B. Interpreting the latent space of GANs for semantic face editing. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, 9243–9252

[57]

Zhu J, Shen Y, Zhao D, Zhou B. In-domain GAN inversion for real image editing. In: Proceedings of the 16th European Conference on Computer Vision. 2020, 592–608

[58]

Patashnik O, Wu Z, Shechtman E, Cohen-Or D, Lischinski D. StyleCLIP: text-driven manipulation of StyleGAN imagery. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021, 2085–2094

[59]

Radford A, Kim J W, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, Clark J, Krueger G, Sutskever I. Learning transferable visual models from natural language supervision. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 8748–8763

[60]

Gu S, Chen D, Bao J, Wen F, Zhang B, Chen D, Yuan L, Guo B. Vector quantized diffusion model for text-to-image synthesis. In: Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 10696–10706

[61]

Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 10684–10695

[62]

Ramesh A, Dhariwal P, Nichol A, Chu C, Chen M. Hierarchical text-conditional image generation with CLIP latents. 2022, arXiv preprint arXiv: 2204.06125

[63]

Saharia C, Chan W, Saxena S, Lit L, Whang J, Denton E L, Ghasemipour S K S, Ayan B K, Mahdavi S S, Gontijo-Lopes R, Salimans T, Ho J, Fleet D J, Norouzi M. Photorealistic text-to-image diffusion models with deep language understanding. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 2643

[64]

Balaji Y, Nah S, Huang X, Vahdat A, Song J, Zhang Q, Kreis K, Aittala M, Aila T, Laine S, Catanzaro B, Karras T, Liu M Y. eDiff-I: text-to-image diffusion models with an ensemble of expert denoisers. 2022, arXiv preprint arXiv: 2211.01324

[65]

Wallace B, Gokul A, Naik N. EDICT: exact diffusion inversion via coupled transformations. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 22532–22541

[66]

Ruiz N, Li Y, Jampani V, Pritch Y, Rubinstein M, Aberman K. DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 22500–22510

[67]

Gupta T, Kembhavi A. Visual programming: compositional visual reasoning without training. In: Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 14953–14962

[68]

Liu H, Li C, Li Y, Lee Y J. Improved baselines with visual instruction tuning. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024

[69]

Schuhmann C. Improved aesthetic predictor, 2022. GitHub repository

[70]

Liu S, Zeng Z, Ren T, Li F, Zhang H, Yang J, Jiang Q, Li C, Yang J, Su H, Zhu J, Zhang L. Grounding DINO: marrying DINO with grounded pre-training for open-set object detection. In: Proceedings of the 18th European Conference on Computer Vision. 2025

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (8317KB)

Supplementary files

Highlights

666

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/