ProbsCut: enhancing adversarial robustness via global probability constraints

Keji HAN , Yao GE , Yun LI

Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (4) : 2004326

PDF (324KB)
Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (4) : 2004326 DOI: 10.1007/s11704-025-41225-3
Artificial Intelligence
LETTER

ProbsCut: enhancing adversarial robustness via global probability constraints

Author information +
History +
PDF (324KB)

Graphical abstract

Cite this article

Download citation ▾
Keji HAN, Yao GE, Yun LI. ProbsCut: enhancing adversarial robustness via global probability constraints. Front. Comput. Sci., 2026, 20(4): 2004326 DOI:10.1007/s11704-025-41225-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. In: Proceedings of the 3rd International Conference on Learning Representations. 2015

[2]

Jia X, Zhang Y, Wei X, Wu B, Ma K, Wang J, Cao X . Improving fast adversarial training with prior-guided knowledge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46( 9): 6367–6383

[3]

Zhang H, Yu Y, Jiao J, Xing E P, El Ghaoui L, Jordan M I. Theoretically principled trade-off between robustness and accuracy. In: Proceedings of the 36th International Conference on Machine Learning. 2019, 7472–7482

[4]

Wang Y, Zou D, Yi J, Bailey J, Ma X, Gu Q. Improving adversarial robustness requires revisiting misclassified examples. In: Proceedings of the 8th International Conference on Learning Representations. 2020

[5]

Croce F, Hein M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 2206–2216

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (324KB)

Supplementary files

Highlights

242

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/