A survey of social network alignment methods based on graph representation learning

Yutong WU , Feiyang LI , Zhan SHI , Zhipeng TIAN , Wang ZHANG , Peng FANG , Renzhi XIAO , Fang WANG , Dan FENG

Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (6) : 2006334

PDF (4143KB)
Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (6) : 2006334 DOI: 10.1007/s11704-025-40985-2
Artificial Intelligence
REVIEW ARTICLE

A survey of social network alignment methods based on graph representation learning

Author information +
History +
PDF (4143KB)

Abstract

Social network alignment (SNA) aims to match corresponding users across different platforms, playing a critical role in cross-platform behavior analysis, personalized recommendations, security, and privacy protection. Traditional methods based on attribute and structural features face significant challenges due to the sparsity, heterogeneity, and dynamic nature of social networks, resulting in limited accuracy and efficiency. Recent advances in graph representation learning (GRL) provide promising solutions to these issues by leveraging deep learning to extract network features, effectively addressing sparsity, integrating heterogeneous data, and adapting to network dynamics. This paper presents a comprehensive survey of SNA methods based on GRL. We first introduce key definitions and outline a framework for SNA using GRL. Next, we systematically review state-of-the-art advancements in both static and dynamic networks, considering homogeneous and heterogeneous settings, including emerging approaches integrating large language models (LLMs). We further conduct an in-depth comparative analysis, highlighting the effectiveness of different GRL-based methods, with a particular emphasis on LLM-enhanced techniques. Finally, we discuss open challenges and outline potential future research directions in this rapidly evolving field.

Graphical abstract

Keywords

social network alignment / graph representation learning / heterogeneous social network / dynamic social networks / graph neural network / large language models

Cite this article

Download citation ▾
Yutong WU, Feiyang LI, Zhan SHI, Zhipeng TIAN, Wang ZHANG, Peng FANG, Renzhi XIAO, Fang WANG, Dan FENG. A survey of social network alignment methods based on graph representation learning. Front. Comput. Sci., 2026, 20(6): 2006334 DOI:10.1007/s11704-025-40985-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Robson E, Hedges T. Behind the screens: social media trends in 2023. Global Web Index, 2023

[2]

Chatzakou D, Soler-Company J, Tsikrika T, Wanner L, Vrochidis S, Kompatsiaris I. User identity linkage in social media using linguistic and social interaction features. In: Proceedings of the 12th ACM Conference on Web Science. 2020, 295−304

[3]

Shao J, Wang Y, Shi B, Gao H, Shen H, Cheng X. Adversarial for social privacy: a poisoning strategy to degrade user identity linkage. 2022, arXiv preprint arXiv: 2209.00269

[4]

Jiang M, Cui P, Yuan N J, Xie X, Yang S. Little is much: bridging cross-platform behaviors through overlapped crowds. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2016, 13−19

[5]

Lee Y L, Zhou T, Yang K, Du Y, Pan L . Personalized recommender systems based on social relationships and historical behaviors. Applied Mathematics and Computation, 2023, 437: 127549

[6]

Shu K, Wang S, Tang J, Zafarani R, Liu H . User identity linkage across online social networks: a review. ACM SIGKDD Explorations Newsletter, 2016, 18( 2): 5–17

[7]

Trung H T, Toan N T, Van Vinh T, Dat H T, Thang D C, Hung N Q V, Sattar A . A comparative study on network alignment techniques. Expert Systems with Applications, 2020, 140: 112883

[8]

Chen B, Chen X . A survey on user alignment across social networks. Journal of Xihua University (Natural Science Edition), 2021, 40( 4): 11–26

[9]

Mika P. Flink: semantic web technology for the extraction and analysis of social networks. Journal of Web Semantics, 2005, 3(2−3): 211−223

[10]

Zafarani R, Liu H. Connecting users across social media sites: a behavioral-modeling approach. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2013, 41−49

[11]

Riederer C, Kim Y, Chaintreau A, Korula N, Lattanzi S. Linking users across domains with location data: theory and validation. In: Proceedings of the 25th International Conference on World Wide Web. 2016, 707−719

[12]

Kong X, Zhang J, Yu P S. Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. 2013, 179−188

[13]

Liu S, Wang S, Zhu F, Zhang J, Krishnan R. HYDRA: large-scale social identity linkage via heterogeneous behavior modeling. In: Proceedings of 2014 ACM SIGMOD International Conference on Management of Data. 2014, 51−62

[14]

Goga O, Lei H, Parthasarathi S H K, Friedland G, Sommer R, Teixeira R. Exploiting innocuous activity for correlating users across sites. In: Proceedings of the 22nd International Conference on World Wide Web. 2013, 447−458

[15]

Narayanan A, Paskov H, Gong N Z, Bethencourt J, Stefanov E, Shin E C R, Song D. On the feasibility of internet-scale author identification. In: Proceedings of 2012 IEEE Symposium on Security and Privacy. 2012, 300−314

[16]

Zhang Z, Gu Q, Yue T, Su S. Identifying the same person across two similar social networks in a unified way: globally and locally. Information Sciences, 2017, 394−395: 53−67

[17]

Zhou X, Liang X, Zhang H, Ma Y . Cross-platform identification of anonymous identical users in multiple social media networks. IEEE Transactions on Knowledge and Data Engineering, 2016, 28( 2): 411–424

[18]

Chen F, Wang Y C, Wang B, Kuo C C J . Graph representation learning: a survey. APSIPA Transactions on Signal and Information Processing, 2020, 9: e15

[19]

Li B, Pi D . Network representation learning: a systematic literature review. Neural Computing and Applications, 2020, 32( 21): 16647–16679

[20]

Hoang V T, Jeon H J, You E S, Yoon Y, Jung S, Lee O J . Graph representation learning and its applications: a survey. Sensors, 2023, 23( 8): 4168

[21]

Perozzi B, Al-Rfou R, Skiena S. DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014, 701−710

[22]

Grover A, Leskovec J. node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 855−864

[23]

Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018, 459−467

[24]

Zhang J, Dong Y, Wang Y, Tang J, Ding M. ProNE: fast and scalable network representation learning. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019, 4278−4284

[25]

Dong Y, Chawla N V, Swami A. metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017, 135−144

[26]

Liu X, Wu K, Liu B, Qian R . HNERec: scientific collaborator recommendation model based on heterogeneous network embedding. Information Processing & Management, 2023, 60( 2): 103253

[27]

Liu J, Song L, Wang G, Shang X . Meta-HGT: metapath-aware HyperGraph transformer for heterogeneous information network embedding. Neural Networks, 2023, 157: 65–76

[28]

Nguyen G H, Lee J B, Rossi R A, Ahmed N K, Koh E, Kim S. Continuous-time dynamic network embeddings. In: Proceedings of the Web Conference 2018. 2018, 969−976

[29]

Zhang P, Yan Y, Li C, Wang S, Xie X, Song G, Kim S. Continual learning on dynamic graphs via parameter isolation. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023, 601−611

[30]

Ji C, Zhao T, Sun Q, Fu X, Li J . Higher-order memory guided temporal random walk for dynamic heterogeneous network embedding. Pattern Recognition, 2023, 143: 109766

[31]

Yang L, Chen H, Wang X, Yang J, Wang F Y, Liu H. Two heads are better than one: integrating knowledge from knowledge graphs and large language models for entity alignment. 2024, arXiv preprint arXiv: 2401.16960

[32]

Jiang X, Shen Y, Shi Z, Xu C, Li W, Li Z, Guo J, Shen H, Wang Y. Unlocking the power of large language models for entity alignment. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024, 7566−7583

[33]

Zhu B, Wang R, Wang J, Shao F, Wang K . A survey: knowledge graph entity alignment research based on graph embedding. Artificial Intelligence Review, 2024, 57( 9): 229

[34]

Zeng K, Li C, Hou L, Li J, Feng L . A comprehensive survey of entity alignment for knowledge graphs. AI Open, 2021, 2: 1–13

[35]

Zhu D, Cui P, Zhang Z, Pei J, Zhu W . High-order proximity preserved embedding for dynamic networks. IEEE Transactions on Knowledge and Data Engineering, 2018, 30( 11): 2134–2144

[36]

Zhou F, Wen Z, Trajcevski G, Zhang K, Zhong T, Liu F. Disentangled network alignment with matching explainability. In: Proceedings of the IEEE Conference on Computer Communications. 2019, 1360−1368

[37]

Li X, Shang Y, Cao Y, Li Y, Tan J, Liu Y. Type-aware anchor link prediction across heterogeneous networks based on graph attention network. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020, 147−155

[38]

Zheng C, Pan L, Wu P . JORA: weakly supervised user identity linkage via jointly learning to represent and align. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35( 3): 3900–3911

[39]

Heimann M, Shen H, Safavi T, Koutra D. REGAL: representation learning-based graph alignment. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018, 117−126

[40]

Chen X, Heimann M, Vahedian F, Koutra D. CONE-Align: consistent network alignment with proximity-preserving node embedding. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020, 1985−1988

[41]

Man T, Shen H, Liu S, Jin X, Cheng X. Predict anchor links across social networks via an embedding approach. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016, 1823−1829

[42]

Zhou X, Liang X, Du X, Zhao J . Structure based user identification across social networks. IEEE Transactions on Knowledge and Data Engineering, 2017, 30( 6): 1178–1191

[43]

Du X, Yan J, Zha H. Joint link prediction and network alignment via cross-graph embedding. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019, 2251−2257

[44]

Qiao Y, Wu Y, Duo F, Lin W, Yang J . Siamese neural networks for user identity linkage through web browsing. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31( 8): 2741–2751

[45]

Trung H T, Van Vinh T, Tam N T, Yin H, Weidlich M, Hung N Q V. Adaptive network alignment with unsupervised and multi-order convolutional networks. In: Proceedings of the 36th International Conference on Data Engineering (ICDE). 2020, 85−96

[46]

Gao J, Huang X, Li J. Unsupervised graph alignment with Wasserstein distance discriminator. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021, 426−435

[47]

Saxena S, Chakraborty R, Chandra J . HCNA: hyperbolic contrastive learning framework for self-supervised network alignment. Information Processing & Management, 2022, 59( 5): 103021

[48]

Yang L, Wang X, Zhang J, Yang J, Xu Y, Hou J, Xin K, Wang F Y . HackGAN: harmonious cross-network mapping using CycleGAN with Wasserstein–Procrustes learning for unsupervised network alignment. IEEE Transactions on Computational Social Systems, 2023, 10( 2): 746–759

[49]

Hong H, Li X, Pan Y, Tsang I W . Domain-adversarial network alignment. IEEE Transactions on Knowledge and Data Engineering, 2022, 34( 7): 3211–3224

[50]

Huynh T T, Duong C T, Nguyen T T, Van V T, Sattar A, Yin H, Nguyen Q V H . Network alignment with holistic embeddings. IEEE Transactions on Knowledge and Data Engineering, 2023, 35( 2): 1881–1894

[51]

Zhou J, Fan J. Translink: user identity linkage across heterogeneous social networks via translating embeddings. In: Proceedings of the IEEE Conference on Computer Communications. 2019, 2116−2124

[52]

Chen M, Tian Y, Yang M, Zaniolo C. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 1511−1517

[53]

Feng J, Zhang M, Wang H, Yang Z, Zhang C, Li Y, Jin D. DPLink: user identity linkage via deep neural network from heterogeneous mobility data. In: Proceedings of the World Wide Web Conference. 2019, 459−469

[54]

Chen S, Wang J, Du X, Hu Y. A novel framework with information fusion and neighborhood enhancement for user identity linkage. In: Proceedings of the 24th European Conference on Artificial Intelligence. 2020, 1754−1761

[55]

Sun L, Zhang Z, Ji P, Wen J, Su S, Yu P S. DNA: dynamic social network alignment. In: Proceedings of 2019 IEEE International Conference on Big Data (Big Data). 2019, 1224−1231

[56]

Sun L, Zhang Z, Wang F, Ji P, Wen J, Su S, Philip S Y . Aligning dynamic social networks: an optimization over dynamic graph autoencoder. IEEE Transactions on Knowledge and Data Engineering, 2023, 35( 6): 5597–5611

[57]

Wang F, Ji P, Sun L, Wei Q, Li G, Zhang Z . A deep learning based dynamic social network alignment method. Acta Electronica Sinica, 2022, 50( 8): 1925–1936

[58]

Liang S, Tang S, Meng Z, Zhang Q . Cross-temporal snapshot alignment for dynamic networks. IEEE Transactions on Knowledge and Data Engineering, 2023, 35( 3): 2406–2420

[59]

Xu C, Su F, Lehmann J. Time-aware graph neural network for entity alignment between temporal knowledge graphs. In: Proceedings of 2021 Conference on Empirical Methods in Natural Language Processing. 2021, 8999−9010

[60]

Xu C, Su F, Xiong B, Lehmann J. Time-aware entity alignment using temporal relational attention. In: Proceedings of the ACM Web Conference 2022. 2022, 788−797

[61]

Cai L, Mao X, Ma M, Yuan H, Zhu J, Lan M. A simple temporal information matching mechanism for entity alignment between temporal knowledge graphs. In: Proceedings of the 29th International Conference on Computational Linguistics. 2022, 2075−2086

[62]

Li J, Song D, Wang H, Wu Z, Zhou C, Zhou Y . Entity alignment for temporal knowledge graphs via adaptive graph networks. Knowledge-Based Systems, 2023, 274: 110631

[63]

Cao S, Lu W, Xu Q. GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 2015, 891−900

[64]

Ou M, Cui P, Pei J, Zhang Z, Zhu W. Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 1105−1114

[65]

Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q. LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web. 2015, 1067−1077

[66]

Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. 2017

[67]

Hamilton W L, Ying Z, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 1025−1035

[68]

Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations. 2018

[69]

Wang H, Wang J, Wang J, Zhao M, Zhang W, Zhang F, Xie X, Guo M. GraphGAN: graph representation learning with generative adversarial nets. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018

[70]

Li J, Wang H. Graph diffusive self-supervised learning for social recommendation. In: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2024, 2442−2446

[71]

Xia L, Huang C, Huang C, Lin K, Yu T, Kao B. Automated self-supervised learning for recommendation. In: Proceedings of the ACM Web Conference 2023. 2023, 992−1002

[72]

Wang Q, Mao Z, Wang B, Guo L . Knowledge graph embedding: a survey of approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 2017, 29( 12): 2724–2743

[73]

Ji S, Pan S, Cambria E, Marttinen P, Philip S Y . A survey on knowledge graphs: representation, acquisition, and applications. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33( 2): 494–514

[74]

Pan S, Luo L, Wang Y, Chen C, Wang J, Wu X . Unifying large language models and knowledge graphs: a roadmap. IEEE Transactions on Knowledge and Data Engineering, 2024, 36( 7): 3580–3599

[75]

Zhu Y, Wang X, Chen J, Qiao S, Ou Y, Yao Y, Deng S, Chen H, Zhang N . LLMs for knowledge graph construction and reasoning: recent capabilities and future opportunities. World Wide Web, 2024, 27( 5): 58

[76]

Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. 2013, 2787−2795

[77]

Jiang J, Ferrara E. Social-LLM: modeling user behavior at scale using language models and social network data. 2023, arXiv preprint arXiv: 2401.00893

[78]

Zhang Y, Sharma K, Du L, Liu Y. Toward mitigating misinformation and social media manipulation in LLM era. In: Proceedings of the ACM Web Conference 2024. 2024, 1302−1305

[79]

Li C, Wong C, Zhang S, Usuyama N, Liu H, Yang J, Naumann T, Poon H, Gao J. LLaVA-med: training a large language-and-vision assistant for biomedicine in one day. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 1240

[80]

Skitsas K, Orlowski K, Hermanns J, Mottin D, Karras P. Comprehensive evaluation of algorithms for unrestricted graph alignment. In: Proceedings 26th International Conference on Extending Database Technology. 2023, 260−272

[81]

Sun Z, Zhang Q, Hu W, Wang C, Chen M, Akrami F, Li C . A benchmarking study of embedding-based entity alignment for knowledge graphs. Proceedings of the VLDB Endowment, 2020, 13( 11): 2326–2340

[82]

Zhao X, Zeng W, Tang J, Wang W, Suchanek F M . An experimental study of state-of-the-art entity alignment approaches. IEEE Transactions on Knowledge and Data Engineering, 2022, 34( 6): 2610–2625

[83]

Zhang R, Trisedya B D, Li M, Jiang Y, Qi J . A benchmark and comprehensive survey on knowledge graph entity alignment via representation learning. The VLDB Journal, 2022, 31( 5): 1143–1168

[84]

Zhang S, Tong H, Xu J, Hu Y, Maciejewski R. ORIGIN: non-rigid network alignment. In: Proceedings of 2019 IEEE International Conference on Big Data (Big Data). 2019, 998−1007

[85]

Liu L, Cheung W K, Li X, Liao L. Aligning users across social networks using network embedding. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016, 1774−1780

[86]

Liu L, Li X, Cheung W K, Liao L . Structural representation learning for user alignment across social networks. IEEE Transactions on Knowledge and Data Engineering, 2020, 32( 9): 1824–1837

[87]

Zhou F, Liu L, Zhang K, Trajcevski G, Wu J, Zhong T. DeepLink: a deep learning approach for user identity linkage. In: Proceedings of the IEEE Conference on Computer Communications. 2018, 1313−1321

[88]

Li G, Sun L, Zhang Z, Ji P, Su S, Yu P S. MC2: unsupervised multiple social network alignment. In: Proceedings of 2019 IEEE International Conference on Big Data (Big Data). 2019, 1151−1156

[89]

Fu S, Wang G, Xia S, Liu L . Deep multi-granularity graph embedding for user identity linkage across social networks. Knowledge-Based Systems, 2020, 193: 105301

[90]

Su S, Sun L, Zhang Z, Li G, Qu J. Master: across multiple social networks, integrate attribute and structure embedding for reconciliation. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018, 3863−3869

[91]

Chen H, Yin H, Sun X, Chen T, Gabrys B, Musial K. Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020, 1503−1511

[92]

Li C, Wang S, Yu P S, Zheng L, Zhang X, Li Z, Liang Y. Distribution distance minimization for unsupervised user identity linkage. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018, 447−456

[93]

Li C, Wang S, Wang Y, Yu P, Liang Y, Liu Y, Li Z. Adversarial learning for weakly-supervised social network alignment. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019, 996−1003

[94]

Zhou Y, Ren J, Jin R, Zhang Z, Zheng J, Jiang Z, Yan D, Dou D . Unsupervised adversarial network alignment with reinforcement learning. ACM Transactions on Knowledge Discovery from Data (TKDD), 2022, 16( 3): 50

[95]

García-Durán A, Dumančić S, Niepert M. Learning sequence encoders for temporal knowledge graph completion. In: Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. 2018, 4816−4821

[96]

Lacroix T, Obozinski G, Usunier N. Tensor decompositions for temporal knowledge base completion. 2020, arXiv preprint arXiv: 2004.04926

[97]

Watts D J, Strogatz S H . Collective dynamics of ‘small-world’ networks. Nature, 1998, 393( 6684): 440–442

[98]

Bai J, Bai S, Chu Y, Cui Z, Dang K, Deng X, Fan Y, Ge W, Han Y, Huang F, Hui B, Ji L, Li M, Lin J, Lin R, Liu D, Liu G, Lu C, Lu K, Ma J, Men R, Ren X, Ren X, Tan C, Tan S, Tu J, Wang P, Wang S, Wang W, Wu S, Xu B, Xu J, Yang A, Yang H, Yang J, Yang S, Yao Y, Yu B, Yuan H, Yuan Z, Zhang J, Zhang X, Zhang Y, Zhang Z, Zhou C, Zhou J, Zhou X, Zhu T. Qwen technical report. 2023, arXiv preprint arXiv: 2309.16609

[99]

Touvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, Bashlykov N, Batra S, Bhargava P, Bhosale S, Bikel D, Blecher L, Ferrer C C, Chen M, Cucurull G, Esiobu D, Fernandes J, Fu J, Fu W, Fuller B, Gao C, Goswami V, Goyal N, Hartshorn A, Hosseini S, Hou R, Inan H, Kardas M, Kerkez V, Khabsa M, Kloumann I, Korenev A, Koura P S, Lachaux M A, Lavril T, Lee J, Liskovich D, Lu Y, Mao Y, Martinet X, Mihaylov T, Mishra P, Molybog I, Nie Y, Poulton A, Reizenstein J, Rungta R, Saladi K, Schelten A, Silva R, Smith E M, Subramanian R, Tan X E, Tang B, Taylor R, Williams A, Kuan J X, Xu P, Yan Z, Zarov I, Zhang Y, Fan A, Kambadur M, Narang S, Rodriguez A, Stojnic R, Edunov S, Scialom T. Llama 2: open foundation and fine-tuned chat models. 2023, arXiv preprint arXiv: 2307.09288

[100]

Baidu Intelligent Cloud Documentation. ERNIE-Speed-8K -Qianfan Large Model Platform. See cloud.baidu.com/doc/WENXIN-WORKSHOP/s/klqx7b1xf website, 2025 (in Chinese)

[101]

Baidu Intelligent Cloud Documentation. ERNIE-Speed-128K -Qianfan Large Model Platform. See cloud.baidu.com/doc/WENXIN-WORKSHOP/s/6ltgkzya5 website, 2025 (in Chinese)

[102]

Guo D, Yang D, Zhang H, Song J, Zhang R, Xu R, Zhu Q, Ma S, Wang P, Bi X, Zhang X, Yu X, Wu Y, Wu Z F, Gou Z, Shao Z, Li Z, Gao Z, Liu A, Xue B, Wang B, Wu B, Feng B, Lu C, Zhao C, Deng C, Zhang C, Ruan C, Dai D, Chen D, Ji D, Li E, Lin F, Dai F, Luo F, Hao G, Chen G, Li G, Zhang H, Bao H, Xu H, Wang H, Ding H, Xin H, Gao H, Qu H, Li H, Guo J, Li J, Wang J, Chen J, Yuan J, Qiu J, Li J, Cai J L, Ni J, Liang J, Chen J, Dong K, Hu K, Gao K, Guan K, Huang K, Yu K, Wang L, Zhang L, Zhao L, Wang L, Zhang L, Xu L, Xia L, Zhang M, Zhang M, Tang M, Li M, Wang M, Li M, Tian N, Huang P, Zhang P, Wang Q, Chen Q, Du Q, Ge R, Zhang R, Pan R, Wang R, Chen R J, Jin R L, Chen R, Lu S, Zhou S, Chen S, Ye S, Wang S, Yu S, Zhou S, Pan S, Li S S, Zhou S, Wu S, Ye S, Yun T, Pei T, Sun T, Wang T, Zeng W, Zhao W, Liu W, Liang W, Gao W, Yu W, Zhang W, Xiao W L, An W, Liu X, Wang X, Chen X, Nie X, Cheng X, Liu X, Xie X, Liu X, Yang X, Li X, Su X, Lin X, Li X Q, Jin X, Shen X, Chen X, Sun X, Wang X, Song X, Zhou X, Wang X, Shan X, Li Y K, Wang Y Q, Wei Y X, Zhang Y, Xu Y, Li Y, Zhao Y, Sun Y, Wang Y, Yu Y, Zhang Y, Shi Y, Xiong Y, He Y, Piao Y, Wang Y, Tan Y, Ma Y, Liu Y, Guo Y, Ou Y, Wang Y, Gong Y, Zou Y, He Y, Xiong Y, Luo Y, You Y, Liu Y, Zhou Y, Zhu Y X, Xu Y, Huang Y, Li Y, Zheng Y, Zhu Y, Ma Y, Tang Y, Zha Y, Yan Y, Ren Z Z, Ren Z, Sha Z, Fu Z, Xu Z, Xie Z, Zhang Z, Hao Z, Ma Z, Yan Z, Wu Z, Gu Z, Zhu Z, Liu Z, Li Z, Xie Z, Song Z, Pan Z, Huang Z, Xu Z, Zhang Z, Zhang Z. DeepSeek-R1: incentivizing reasoning capability in LLMs via reinforcement learning. 2025, arXiv preprint arXiv: 2501.12948

[103]

Liao H, He S, Hao Y, Li X, Zhang Y, Zhao J, Liu K. SKIntern: internalizing symbolic knowledge for distilling better CoT capabilities into small language models. In: Proceedings of the 31st International Conference on Computational Linguistics. 2025, 3203−3221

[104]

Chen X, Sun Z, Guo W, Zhang M, Chen Y, Sun Y, Su H, Pan Y, Klakow D, Li W, Shen X. Unveiling the key factors for distilling chain-of-thought reasoning. 2025, arXiv preprint arXiv: 2502.18001

[105]

Douillard A, Feng Q, Rusu A A, Chhaparia R, Donchev Y, Kuncoro A, Ranzato M, Szlam A, Shen J. DiLoCo: distributed low-communication training of language models. 2023, arXiv preprint arXiv: 2311.08105

[106]

Jaghouar S, Ong J M, Hagemann J. OpenDiLoCo: an open-source framework for globally distributed low-communication training. 2024, arXiv preprint arXiv: 2407.07852

[107]

Li S, Tang H. Multimodal alignment and fusion: a survey. 2024, arXiv preprint arXiv: 2411.17040

[108]

Koushik A, Manoj M, Nezamuddin N . Shapley additive explanations for explaining artificial neural network based mode choice models. Transportation in Developing Economies, 2024, 10( 1): 12

[109]

Gebreyesus Y, Dalton D, De Chiara D, Chinnici M, Chinnici A . AI for automating data center operations: model explainability in the data Centre context using Shapley additive explanations (SHAP). Electronics, 2024, 13( 9): 1628

[110]

Davoudi S O. On the interpretability and explainability of prototype-based methods and reinforcement learning. Carleton University, Dissertation, 2024

[111]

Zhou L, Ma X J, Pan D H, Fan D M, Zhang H F, Zhong K . HE-SNA: an efficient cross-platform network alignment scheme from privacy-aware perspective. Complex & Intelligent Systems, 2023, 9( 5): 6009–6022

[112]

Chen J, Hu C, Sheng W, Li R, Zhao R, Yu J. A trust-based personalized differential privacy guarantees for online social networks. IEEE Transactions on Network and Service Management, 2025

[113]

Yang X, Liu Y, He S . Overview of privacy set intersection protocol based on heterogeneous network and social network user alignment. IEEE Transactions on Network Science and Engineering, 2024, 11( 6): 6692–6703

[114]

Zhang Y, Li P, Hong J, Li J, Zhang Y, Zheng W, Chen P Y, Lee J D, Yin W, Hong M, Hong M, Wang Z, Liu S, Chen T. Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: a benchmark. In: Proceedings of the 41st International Conference on Machine Learning. 2024, 2444

[115]

Gao B, He Z, Sharma P, Kang Q, Jevdjic D, Deng J, Yang X, Yu Z, Zuo P. Cost-efficient large language model serving for multi-turn conversations with CachedAttention. In: Proceedings of 2024 USENIX Conference on USENIX Annual Technical Conference. 2024, 7

RIGHTS & PERMISSIONS

The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (4143KB)

Supplementary files

Highlights

704

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/