Software defect detection using large language models: a literature review
Yu CHEN , Yi SHEN , Taiyan WANG , Shiwen OU , Ruipeng WANG , Yuwei LI , Zulie PAN
Front. Comput. Sci. ›› 2026, Vol. 20 ›› Issue (6) : 2006202
Software defect detection using large language models: a literature review
As software systems grow in complexity, the importance of efficient defect detection escalates, becoming vital to maintain software quality. In recent years, artificial intelligence technology has boomed. In particular, with the proposal of Large Language Models (LLMs), researchers have found the huge potential of LLMs to enhance the performance of software defect detection. This review aims to elucidate the relationship between LLMs and software defect detection. We categorize and summarize existing research based on the distinct applications of LLMs in dynamic and static detection scenarios. Dynamic detection methods are categorized based on the different phases in which they employ LLMs, such as using them for test case generation, providing feedback guidance, and conducting output assessment. Static detection methods are classified according to whether they analyze the source code or the binary of the software under test. Furthermore, we investigate the prompt engineering and model fine-tuning strategies adopted within these studies. Finally, we summarize the emerging trend of integrating LLMs into software defect detection, identify challenges to be addressed and prospect for some potential research directions.
software defect detection / large language models / prompt engineering / fine-tuning
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
National Institute of Standards and Technology. Test suites. See samate.nist.gov/SARD/test-suites website, 2024 |
| [127] |
|
The Author(s) 2025. This article is published with open access at link.springer.com and journal.hep.com.cn
/
| 〈 |
|
〉 |