Factor-wise disentangled contrastive learning for cross-domain few-shot molecular property prediction

Zhibin NI , Chenghao ZHANG , Hai WAN , Xibin ZHAO

Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (8) : 198916

PDF (447KB)
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (8) : 198916 DOI: 10.1007/s11704-024-40791-2
Interdisciplinary
LETTER

Factor-wise disentangled contrastive learning for cross-domain few-shot molecular property prediction

Author information +
History +
PDF (447KB)

Graphical abstract

Cite this article

Download citation ▾
Zhibin NI, Chenghao ZHANG, Hai WAN, Xibin ZHAO. Factor-wise disentangled contrastive learning for cross-domain few-shot molecular property prediction. Front. Comput. Sci., 2025, 19(8): 198916 DOI:10.1007/s11704-024-40791-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo Z, Zhang C, Yu W, Herr J, Wiest O, Jiang M, Chawla N V. Few-shot graph learning for molecular property prediction. In: Proceedings of Web Conference 2021. 2021, 2559−2567

[2]

Cai R, Wu F, Li Z, Wei P, Yi L, Zhang K . Graph domain adaptation: a generative view. ACM Transactions on Knowledge Discovery from Data, 2024, 18( 3): 60

[3]

Yin N, Shen L, Wang M, Lan L, Ma Z, Chen C, Hua X S, Luo X. CoCo: a coupled contrastive framework for unsupervised domain adaptive graph classification. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 1673

[4]

Hassani K. Cross-domain few-shot graph classification. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. 2022, 6856−6864

[5]

Zhang Q, Pei S, Yang Q, Zhang C, Chawla N V, Zhang X. Cross-domain few-shot graph classification with a reinforced task coordinator. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. 2023, 4893−4901

[6]

Li H, Zhang Z, Wang X, Zhu W . Disentangled graph contrastive learning with independence promotion. IEEE Transactions on Knowledge and Data Engineering, 2023, 35( 8): 7856–7869

[7]

Tsai T W, Li C, Zhu J. MiCE: mixture of contrastive experts for unsupervised image clustering. In: Proceedings of the 9th International Conference on Learning Representations. 2021

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (447KB)

524

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/