A perspective on digital signal processor based leadership performance accelerator for AI and HPC

Yang GUO , Yaohua WANG , Sheng MA

Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (7) : 197109

PDF (135KB)
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (7) : 197109 DOI: 10.1007/s11704-024-40149-8
Architecture
LETTER

A perspective on digital signal processor based leadership performance accelerator for AI and HPC

Author information +
History +
PDF (135KB)

Graphical abstract

Cite this article

Download citation ▾
Yang GUO, Yaohua WANG, Sheng MA. A perspective on digital signal processor based leadership performance accelerator for AI and HPC. Front. Comput. Sci., 2025, 19(7): 197109 DOI:10.1007/s11704-024-40149-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kogge P, Shalf J. Exascale computing trends: adjusting to the 'new normal' for computer architecture. Computing in Science & Engineering, 2013, 15(6): 16–26

[2]

Liao X K, Lu K, Yang C Q, Li J W, Yuan Y, Lai M C, Huang L B, Lu P J, Fang J B, Ren J, Shen J . Moving from exascale to zettascale computing: challenges and techniques. Frontiers of Information Technology & Electronic Engineering, 2018, 19( 10): 1236–1244

[3]

Bartoldson B R, Kailkhura B, Blalock D. Compute-efficient deep learning: algorithmic trends and opportunities. Journal of Machine Learning Research, 2023, 24(122): 1–77

[4]

Chen S, Wang Y, Liu S, Wan J, Chen H, Liu H, Zhang K, Liu X, Ning X . FT-matrix: a coordination-aware architecture for signal processing. IEEE Micro, 2014, 34( 6): 64–73

[5]

Wang Y, Li C, Liu C, Liu S, Lei Y, Zhang J, Zhang Y, Guo Y . Advancing DSP into HPC, AI, and beyond: challenges, mechanisms, and future directions. CCF Transactions on High Performance Computing, 2021, 3( 1): 114–125

[6]

Wang H L, Guo Y, Qu W X . Deep learning hardware acceleration based on general vector DSP. Scientia Sinica Informationis, 2019, 49( 3): 256–276

[7]

Lu K, Wang Y, Guo Y, Huang C, Liu S, Wang R, Fang J, Tang T, Chen Z, Liu B, Liu Z, Lei Y, Sun H . MT-3000: a heterogeneous multi-zone processor for HPC. CCF Transactions on High Performance Computing, 2022, 4( 2): 150–164

[8]

Ma Y J, Yu D H, Wu T, Wang H F . PaddlePaddle: an open-source deep learning platform from industrial practice. Frontiers of Data & Computing, 2019, 1( 1): 105–115

[9]

Leiserson C E, Thompson N C, Emer J S, Kuszmaul B C, Lampson B W, Sanchez D, Schardl T B. There’s plenty of room at the top: what will drive computer performance after Moore’s law? Science, 2020, 368(6495): eaam9744

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (135KB)

Supplementary files

Highlights

918

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/