HeterMM: applying in-DRAM index to heterogeneous memory-based key-value stores

Yunhong JI , Wentao HUANG , Xuan ZHOU

Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (4) : 184612

PDF (2460KB)
Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (4) : 184612 DOI: 10.1007/s11704-024-3713-0
Information Systems
LETTER

HeterMM: applying in-DRAM index to heterogeneous memory-based key-value stores

Author information +
History +
PDF (2460KB)

Graphical abstract

Cite this article

Download citation ▾
Yunhong JI, Wentao HUANG, Xuan ZHOU. HeterMM: applying in-DRAM index to heterogeneous memory-based key-value stores. Front. Comput. Sci., 2024, 18(4): 184612 DOI:10.1007/s11704-024-3713-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang W, Ji Y, Zhou X, He B, Tan K. A design space exploration and evaluation for main-memory hash joins in storage class memory. Proceedings of the VLDB Endowment, 2023, 16(6): 1249–1263

[2]

Ramanathan M K, Kim W H, Fu X, Monga S K, Lee H W, Jang M, Mathew A, Min C. TIPS: making volatile index structures persistent with DRAM-NVMM tiering. In: Proceedings of 2021 USENIX Annual Technical Conference. 2021, 773−787

[3]

Cooper B F, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing. 2010, 143−154

[4]

Hu D, Chen Z, Che W, Sun J, Chen H. Halo: a hybrid PMem-DRAM persistent hash index with fast recovery. In: Proceedings of 2022 International Conference on Management of Data. 2022, 1049−1063

[5]

Chen Y, Lu Y, Fang K, Wang Q, Shu J . uTree: a persistent B+-tree with low tail latency. Proceedings of the VLDB Endowment, 2020, 13( 12): 2634–2648

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2460KB)

Supplementary files

FCS-23713-OF-YL_suppl_1

FCS-23713-OF-YL_suppl_2

801

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/