MMCo: using multimodal deep learning to detect malicious traffic with noisy labels

Qingjun YUAN , Gaopeng GOU , Yuefei ZHU , Yongjuan WANG

Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (1) : 181809

PDF (1786KB)
Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (1) : 181809 DOI: 10.1007/s11704-023-2386-4
Information Security
LETTER

MMCo: using multimodal deep learning to detect malicious traffic with noisy labels

Author information +
History +
PDF (1786KB)

Graphical abstract

Cite this article

Download citation ▾
Qingjun YUAN, Gaopeng GOU, Yuefei ZHU, Yongjuan WANG. MMCo: using multimodal deep learning to detect malicious traffic with noisy labels. Front. Comput. Sci., 2024, 18(1): 181809 DOI:10.1007/s11704-023-2386-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun X, Ma S, Li Y, Wang D, Li Z, Wang N, Gui G . Enhanced echo-state restricted Boltzmann machines for network traffic prediction. IEEE Internet of Things Journal, 2020, 7( 2): 1287–1297

[2]

Popoola S I, Ande R, Adebisi B, Gui G, Hammoudeh M, Jogunola O . Federated deep learning for zero-day botnet attack detection in IoT-edge devices. IEEE Internet of Things Journal, 2022, 9( 5): 3930–3944

[3]

Ring M, Wunderlich S, Scheuring D, Landes D, Hotho A . A survey of network-based intrusion detection data sets. Computers & Security, 2019, 86: 147–167

[4]

Han B, Yao Q, Yu X, Niu G, Xu M, Hu W, Tsang I W, Sugiyama M. Co-teaching: robust training of deep neural networks with extremely noisy labels. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018, 8536−8546

[5]

Yu X, Han B, Yao J, Niu G, Tsang I W, Sugiyama M. How does disagreement help generalization against label corruption? In: Proceedings of the 36th International Conference on Machine Learning. 2019, 7164−7173

[6]

Tan C, Xia J, Wu L, Li S Z. Co-learning: learning from noisy labels with self-supervision. In: Proceedings of the 29th ACM International Conference on Multimedia. 2021, 1405−1413

[7]

Aceto G, Ciuonzo D, Montieri A, Pescapé A. DISTILLER: encrypted traffic classification via multimodal multitask deep learning. Journal of Network and Computer Applications, 2021, 183−184: 102985

[8]

Nascita A, Montieri A, Aceto G, Ciuonzo D, Persico V, Pescapé A . XAI meets mobile traffic classification: understanding and improving multimodal deep learning architectures. IEEE Transactions on Network and Service Management, 2021, 18( 4): 4225–4246

[9]

Sharafaldin I, Lashkari A H, Ghorbani A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: Proceedings of the 4th International Conference on Information Systems Security and Privacy. 2018, 108−116

[10]

MontazeriShatoori M, Davidson L, Kaur G, Lashkari A H. Detection of DoH tunnels using time-series classification of encrypted traffic. In: Proceedings of the 5th Cyber Science and Technology Congress. 2020, 63−70

RIGHTS & PERMISSIONS

The Author(s) 2023. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (1786KB)

Supplementary files

FCS-22386-OF-QY_suppl_1

1192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/