Deep active sampling with self-supervised learning

Haochen SHI, Hui ZHOU

PDF(2186 KB)
PDF(2186 KB)
Front. Comput. Sci. ›› 2023, Vol. 17 ›› Issue (4) : 174323. DOI: 10.1007/s11704-022-2189-z
Artificial Intelligence
LETTER

Deep active sampling with self-supervised learning

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Haochen SHI, Hui ZHOU. Deep active sampling with self-supervised learning. Front. Comput. Sci., 2023, 17(4): 174323 https://doi.org/10.1007/s11704-022-2189-z

References

[1]
Bengar J Z, van de Weijer J, Twardowski B, Raducanu B. Reducing label effort: self-supervised meets active learning. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021, 1631–1639
[2]
He K, Fan H, Wu Y, Xie S, Girshick R. Momentum contrast for unsupervised visual representation learning. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, 9726–9735
[3]
Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. 2017, arXiv preprint arXiv: 1708.07747
[4]
Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. See Google website, 2009

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(2186 KB)

Accesses

Citations

Detail

Sections
Recommended

/