Multi-dimensional information-driven many-objective software remodularization approach
Amarjeet PRAJAPATI , Anshu PARASHAR , Amit RATHEE
Front. Comput. Sci. ›› 2023, Vol. 17 ›› Issue (3) : 173209
Multi-dimensional information-driven many-objective software remodularization approach
Most of the search-based software remodularization (SBSR) approaches designed to address the software remodularization problem (SRP) areutilizing only structural information-based coupling and cohesion quality criteria. However, in practice apart from these quality criteria, there require other aspects of coupling and cohesion quality criteria such as lexical and changed-history in designing the modules of the software systems. Therefore, consideration of limited aspects of software information in the SBSR may generate a sub-optimal modularization solution. Additionally, such modularization can be good from the quality metrics perspective but may not be acceptable to the developers. To produce a remodularization solution acceptable from both quality metrics and developers’ perspectives, this paper exploited more dimensions of software information to define the quality criteria as modularization objectives. Further, these objectives are simultaneously optimized using a tailored many-objective artificial bee colony (MaABC) to produce a remodularization solution. To assess the effectiveness of the proposed approach, we applied it over five software projects. The obtained remodularization solutions are evaluated with the software quality metrics and developers view of remodularization. Results demonstrate that the proposed software remodularization is an effective approach for generating good quality modularization solutions.
software restructuring / remodularization / multi-objective optimization / software coupling and cohesion
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Bavota G, De Lucia A, Marcus A, Oliveto R. Software re-modularization based on structural and semantic metrics. In: Proceedings of the 17th Working Conference on Reverse Engineering. 2010, 195−204 |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |