Self-adaptive label filtering learning for unsupervised domain adaptation

Qing TIAN , Heyang SUN , Shun PENG , Tinghuai MA

Front. Comput. Sci. ›› 2023, Vol. 17 ›› Issue (1) : 171308

PDF (3924KB)
Front. Comput. Sci. ›› 2023, Vol. 17 ›› Issue (1) : 171308 DOI: 10.1007/s11704-022-1283-6
Artificial Intelligence
LETTER

Self-adaptive label filtering learning for unsupervised domain adaptation

Author information +
History +
PDF (3924KB)

Graphical abstract

Cite this article

Download citation ▾
Qing TIAN, Heyang SUN, Shun PENG, Tinghuai MA. Self-adaptive label filtering learning for unsupervised domain adaptation. Front. Comput. Sci., 2023, 17(1): 171308 DOI:10.1007/s11704-022-1283-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wold S , Esbensen K , Geladi P . Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1987, 2( 1−3): 37– 52

[2]

Long M, Ding G, Wang J, Sun J, Guo Y, Yu P S. Transfer sparse coding for robust image representation. In: Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. 2013, 407– 414

[3]

Zhang J, Li W, Ogunbona P. Joint geometrical and statistical alignment for visual domain adaptation. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017, 5150– 5158

[4]

Li S , Song S , Huang G , Ding Z , Wu C . Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE Transactions on Image Processing, 2018, 27( 9): 4260– 4273

[5]

Luo L , Chen L , Hu S , Lu Y , Wang X . Discriminative and geometry-aware unsupervised domain adaptation. IEEE Transactions on Cybernetics, 2020, 50( 9): 3914– 3927

RIGHTS & PERMISSIONS

Higher Education Press 2021

AI Summary AI Mindmap
PDF (3924KB)

Supplementary files

Highlights

Supplementary materials

2125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/