Further study on indecomposable cryptographic functions

Zhongqiu WANG , Shixiong XIA , Fengrong ZHANG

Front. Comput. Sci. ›› 2023, Vol. 17 ›› Issue (2) : 172803

PDF (461KB)
Front. Comput. Sci. ›› 2023, Vol. 17 ›› Issue (2) : 172803 DOI: 10.1007/s11704-021-0550-2
Information Security
LETTER

Further study on indecomposable cryptographic functions

Author information +
History +
PDF (461KB)

Cite this article

Download citation ▾
Zhongqiu WANG, Shixiong XIA, Fengrong ZHANG. Further study on indecomposable cryptographic functions. Front. Comput. Sci., 2023, 17(2): 172803 DOI:10.1007/s11704-021-0550-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou Y , Zhang W , Li J , Dong X , Xiao G . The autocorrelation distribution of balanced Boolean function. Frontiers of Computer Science, 2013, 7( 2): 272– 278

[2]

Zhao H , Wei Y . New construction of highly nonlinear resilient S-boxes via linear codes. Frontiers of Computer Science, 2022, 16( 3): 163805

[3]

Dillon J F. Elementary hadamard difference sets. University of Maryland, Dissertation, 1974

[4]

Zhang F , Wei Y , Pasalic E , Xia S . Large sets of disjoint spectra plateaued functions inequivalent to partially linear functions. IEEE Transactions on Information Theory, 2018, 64( 4): 2987– 2999

[5]

Zhang W , Pasalic E . Improving the lower bound on the maximum nonlinearity of 1-resilient Boolean functions and designing functions satisfying all cryptographic criteria. Information Sciences, 2017, 376: 21– 30

[6]

Biham E , Shamir A . Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology, 1991, 4( 1): 3– 72

[7]

Zheng Y, Zhang X M. Non-separable cryptographic functions. In: Proceedings of the 2000 International Symposium on Information Theory and its Application. 2000, 51– 58

[8]

Carlet C . On the secondary constructions of resilient and bent functions. In: Feng K, Niederreiter H, Xing C, eds. Coding, Cryptography and Combinatorics. Basel: Birkhäuser, 2004, 3– 28

[9]

MacWilliams F J, Sloane N J A. The Theory of Error-Correcting Codes. Amsterdam: North-Holland Publishing Company, 1977

[10]

Rothaus O S . On “bent” functions. Journal of Combinatorial Theory, Series A, 1976, 20( 3): 300– 305

RIGHTS & PERMISSIONS

Higher Education Press 2023

AI Summary AI Mindmap
PDF (461KB)

1886

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/