Similarity-based privacy protection for publishing k-anonymous trajectories

Shuai WANG , Chunyi CHEN , Guijie ZHANG

Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 163605

PDF (744KB)
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 163605 DOI: 10.1007/s11704-020-0271-y
Information Systems
LETTER

Similarity-based privacy protection for publishing k-anonymous trajectories

Author information +
History +
PDF (744KB)

Graphical abstract

Cite this article

Download citation ▾
Shuai WANG, Chunyi CHEN, Guijie ZHANG. Similarity-based privacy protection for publishing k-anonymous trajectories. Front. Comput. Sci., 2022, 16(3): 163605 DOI:10.1007/s11704-020-0271-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu K , Yang J . Trajectory distance metric based on edit distance. Journal of Shanghai Jiaotong University, 2009, 43( 11): 50– 54

[2]

Wang S , Chen C , Zhang G , Xin Y . Interchange-based privacy protection for publishing trajectories. IEEE Access, 2019, 7( 1): 138299– 138314

[3]

Abul O, Bonchi F, Nanni M. Never walk alone: uncertainty for anonymity in moving objects databases. In: Proceedings of IEEE International Conference on Data Engineering. 2008, 376-385

[4]

Xin Y , Xie Z , Yang J . The privacy preserving method for dynamic trajectory releasing based on adaptive clustering. Information Sciences, 2017, 378 : 131– 143

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (744KB)

Supplementary files

Highlights

supplementary material

1567

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/