Low-rank representation based robust face recognition by two-dimensional whitening reconstruction

Shuo FENG , Changpeng WANG , Hong SHU , Tingyu ZHANG

Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (4) : 144308

PDF (106KB)
Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (4) : 144308 DOI: 10.1007/s11704-019-8421-9
LETTER

Low-rank representation based robust face recognition by two-dimensional whitening reconstruction

Author information +
History +
PDF (106KB)

Cite this article

Download citation ▾
Shuo FENG, Changpeng WANG, Hong SHU, Tingyu ZHANG. Low-rank representation based robust face recognition by two-dimensional whitening reconstruction. Front. Comput. Sci., 2020, 14(4): 144308 DOI:10.1007/s11704-019-8421-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu G, Lin Z,Yan S, Sun J, Yu Y, Ma Y.Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171–184

[2]

Zhang H, Gong C, Qian J,Zhang B, Xu C, Yang J. Efficient recovery of low-rank matrix via double nonconvex nonsmooth rank minimization. IEEE Transactions on Neural Networks, 2019, 30(10): 2916–2925

[3]

Wang Y, Morariu V, Davis L S. Unsupervised feature extraction inspired by latent low-rank representation. In: Proceedings of the 2005 IEEE Winter Conference on Applications of Computer Vision. 2015, 542–549

[4]

Lei Z, Pietikainen M, Li S Z. Learning discriminant face descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2): 289–302

[5]

Shi X, Guo Z, NieF, Yang L, You J, Tao D. Two-dimensional whitening reconstruction for enhancing robustness of principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(10): 2130–2136

[6]

Zhu X, Ghahramani Z, Lafferty J. Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning. 2003, 912–919

[7]

Liu G, Yan S. Latent low-rank representation for subspace segmentation and feature extraction. In: Proceedings of the IEEE International Conference on Computer Vision. 2011, 1615–1622

[8]

Fei L,Xu Y, Fang X, Yang J. Low rank representation with adaptive distance penalty for semi-supervised subspace classification. Pattern Recognition, 2017, 67: 252–262

[9]

Wen J, Zhang B, Xu Y,Yang J, Han N. Adaptive weighted nonnegative low-rank representation. Pattern Recognition, 2018, 81: 326–340

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (106KB)

Supplementary files

FCS-0016-18421-SF_suppl_1

974

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/