Advance on large scale near-duplicate video retrieval

Ling SHEN , Richang HONG , Yanbin HAO

Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (5) : 145702

PDF (666KB)
Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (5) : 145702 DOI: 10.1007/s11704-019-8229-7
REVIEW ARTICLE

Advance on large scale near-duplicate video retrieval

Author information +
History +
PDF (666KB)

Abstract

Emerging Internet services and applications attract increasing users to involve in diverse video-related activities, such as video searching, video downloading, video sharing and so on. As normal operations, they lead to an explosive growth of online video volume, and inevitably give rise to the massive near-duplicate contents. Near-duplicate video retrieval (NDVR) has always been a hot topic. The primary purpose of this paper is to present a comprehensive survey and an updated reviewof the advance on large-scaleNDVR to supply guidance for researchers. Specifically, we summarize and compare the definitions of near-duplicate videos (NDVs) in the literature, analyze the relationship between NDVR and its related research topics theoretically, describe its generic framework in detail, investigate the existing state-of-the-art NDVR systems. Finally, we present the development trends and research directions of this topic.

Keywords

near-duplicate videos / video retrieval / featurerepresentation / video signature / indexing / similarity measurement

Cite this article

Download citation ▾
Ling SHEN, Richang HONG, Yanbin HAO. Advance on large scale near-duplicate video retrieval. Front. Comput. Sci., 2020, 14(5): 145702 DOI:10.1007/s11704-019-8229-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Khan N, Yaqoob I, Hashem I A T, Inayat Z, Ali W K M, Alam M, Shiraz M, Gani A. Big data: survey, technologies, opportunities, and challenges. The Scientific World Journal, 2014, 2014: 712826

[2]

Wu X, Hauptmann A G, Ngo C W. Practical elimination of nearduplicates from web video search. In: Proceedings of the 15th ACM International Conference on Multimedia. 2007, 218–227

[3]

Davidson J, Liebald B, Liu J, Nandy P, Vleet T V. The youtube video recommendation system. In: Proceedings of the 4th ACM Conference on Recommender Systems. 2010, 293–296

[4]

Yang B, Mei T, Hua X S, Yang L, Yang S Q, Li M J. Online video recommendation based on multimodal fusion and relevance feedback. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval. 2007, 73–80

[5]

Koch E, Rindfre J, Zhao J. Copyright protection for multimedia data. In: Proceedings of the International Conference on Digital Media and Electronic Publishing. 1994

[6]

Zhou X, Chen L. Monitoring near duplicates over video streams. In: Proceedings of the 18th ACM International Conference on Multimedia. 2010, 521–530

[7]

Tamilselvi J J, Gifta C B. Handling duplicate data in data warehouse for data mining. International Journal of Computer Applications, 2011, 15(4): 7–15

[8]

Chen M S, Han J, Yu P S. Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 2002, 8(6): 866–883

[9]

Wu X, Ide I, Satoh S. News topic tracking and re-ranking with query expansion based on near-duplicate detection. In: Proceedings of Pacific-Rim Conference on Multimedia. 2009, 755–766

[10]

Shen H T, Zhou X, Huang Z, Shao J, Zhou X. UQLIPS: a realtime near-duplicate video clip detection system. In: Proceedings of the 33rd International Conference on Very Large Data Bases. 2007, 1374–1377

[11]

Liu J, Huang Z, Cai H, Shen H T, Ngo C W, Wan g W. Near-duplicate video retrieval: current research and future trends. ACM Computing Surveys, 2013, 45(4): 44

[12]

Cherubini M, Oliveira R D, Oliver N. Understanding near-duplicate videos: a user-centric approach. In: Proceedings of the 17th ACM International Conference on Multimedia. 2009, 35–44

[13]

Chou C L, Chen H T, Lee S Y. Pattern-based near-duplicate video retrieval and localization on web-scale videos. IEEE Transactions on Multimedia, 2015, 17(3): 382–395

[14]

Zhang J R, Ren J Y, Chang F, Wood T L, Kender J R. Fast nearduplicate video retrieval via motion time series matching. In: Proceedings of the IEEE International Conference on Multimedia and Expo. 2012, 842–847

[15]

Basharat A, Zhai Y, Shah M. Content based video matching using spatiotemporal volumes. Computer Vision and Image Understanding, 2008, 110(3): 360–377

[16]

Smeulders A W M, Worring M, Santini S, Gupta A, Jain R. Contentbased image retrieval at the end of the early. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349–1380

[17]

Yan Y, Ooi B C, Zhou A. Continuous content-based copy detection over streaming videos. In: Proceedings of the 24th IEEE International Conference on Data Engineering. 2008, 853–862

[18]

Mou L, Huang T, Tian Y, Jiang M, Gao W. Content-based copy detection through multimodal feature representation and temporal pyramid matching. ACM Transactions on Multimedia Computing Communications and Applications, 2013, 10(1): 1–20

[19]

Hong R, Yang Y, Wang M, Hua X S. Learning visual semantic relationships for efficient visual retrieval. IEEE Transactions on Big Data, 2017, 1(4): 152–161

[20]

Saravanan M S G, Sivaprakasam M T, Somasundaram D. A review on content based video retrieval, classification and summarization. Asian Journal of Applied Science and Technology, 2017, 1(9): 40–45

[21]

Xie Q, Huang Z, Shen H T, Zhou X, Pang C. Efficient and continuous near-duplicate video detection. In: Proceedings of the 12th International Asia-Pacific Web Conference. 2010, 260–266

[22]

Nie X, Chai Y, Liu J, Sun J, Yin Y. Spherical torus-based video hashing for near-duplicate video detection. Science China Information Sciences, 2016, 59(5): 059101

[23]

da Silva H B, do Patrocínio Z K, Gravier G, Amsaleg L, Araújo A D A, Guimaraes S J F. Near-duplicate video detection based on an approximate similarity self-join strategy. In: Proceedings of the 14th International Workshop on Content-Based Multimedia Indexing. 2016, 1–6

[24]

Lameri S, Bondi L, Bestagini P, Tubaro S. Near-duplicate video detection exploiting noise residual traces. In: Proceedings of the IEEE International Conference on Image Processing. 2017, 1497–1501

[25]

Washino K, Schwab B H. Video monitoring and conferencing system. U.S. Patent No. 5,625,410. 1997-4-29

[26]

Jiang J, Tong Y, Lu H, Cui B, Lei K, Yu L. GVoS: a general system for near-duplicate video-related applications on storm. ACM Transactions on Information Systems, 2017, 36(1): 3

[27]

Huang Z, Wang L, Shen H T, Shao J, Zhou X. Online near-duplicate video clip detection and retrieval: an accurate and fast system. In: Proceedings of the 25th IEEE International Conference on Data Engineering. 2009, 1511–1514

[28]

Kraaij W, Awad G. TRECVID 2011 content-based copy detection: task overview. Online Proceedings of TRECVid, 2011

[29]

Awad G, Fiscus J, Kraaij W. TRECVID 2011–an overview of the goals, tasks, data, evaluation mechanisms, and metrics. National Institute of Standards and Technology, 2014, 1–58

[30]

Smeaton A F, Over P, Kraaij W. Evaluation campaigns and TRECVid. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval. 2006, 321–330

[31]

Law-To J, Chen L, Joly A, Laptev I, Buisson O, Gouet-Brunet V, Boujemaa N, Stentiford F. Video copy detection: a comparative study. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval. 2007, 371–378

[32]

Hampapur A, Bolle R M. Comparison of sequence matching techniques for video copy detection. In: Proceedings of SPIE Storage and Retrieval for Media Databases. 2002, 194–202

[33]

Zobel J, Hoad T C. Detection of video sequences using compact signatures. ACM Transactions on Information Systems, 2006, 24(1): 1–50

[34]

Joly A, Buisson O, Frelicot C. Content-based copy retrieval using distortion-based probabilistic similarity search. IEEE Transactions on Multimedia, 2007, 9(2): 293–306

[35]

Yeh M C, Cheng K T. Video copy detection by fast sequence matching. In: Proceedings of the ACM International Conference on Image and Video Retrieval. 2009, 45

[36]

Kraaij W, Awad G, Over P. TRECVID-2008 content-based copy detection task overview (slides). National Institute of Standards and Technology, 2008

[37]

Aigrain P, Zhang H, Petkovic D. Content-based representation and retrieval of visual media: a state-of-the-art review. Multimedia Tools and Applications, 1996, 3(3): 179–202

[38]

Hu W, Xie N, Li L, Maybank S. A survey on visual content-based video indexing and retrieval. IEEE Transactions on Systems Man and Cybernetics, Part C, 2011, 41(6): 797–819

[39]

Hong R, Tang J, Tan H K, Ngo C W, Yan S, Chua T S. Beyond search: event-driven summarization for web videos. ACM Transactions on Multimedia Computing Communications and Applications, 2011, 7(4): 35

[40]

Chua T S, Hong R, Li G, Tang J. From text question-answering to multimedia QA on web-scale media resources. In: Proceedings of the 1st ACM Workshop on Large-Scale Multimedia Retrieval and Mining. 2009, 51–58

[41]

Zhao W L, Ngo C W, Tan H K, Wu X. Near-duplicate keyframe identification with interest point matching and pattern learning. IEEE Transactions on Multimedia, 2007, 9(5): 1037–1048

[42]

Wu X, Zhao W L, Ngo C W. Near-duplicate keyframe retrieval with visual keywords and semantic context. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval. 2007, 162–169

[43]

Geetha P, Narayanan V. A survey of content-based video retrieval. Journal of Computer Science, 2008, 4(6): 734

[44]

Wu X, Zhao W L, Ngo C W. Efficient near-duplicate keyframe retrieval with visual language models. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2007, 500–503

[45]

Yeo C, Zhu Y W, Sun Q, Chang S F. A framework for sub-window shot detection. In: Proceedings of the 11th International Multimedia Modelling Conference. 2005, 84–91

[46]

Satoh S, Takimoto M, Adachi J. Scene duplicate detection from videos based on trajectories of feature points. In: Proceedings of the International Workshop on Multimedia Information Retrieval. 2007, 237–244

[47]

Hong R, Wang M, Xu M, Yan S, Chua T S. Dynamic captioning: video accessibility enhancement for hearing impairment. In: Proceedings of the 18th ACM International Conference on Multimedia. 2010, 421–430

[48]

Wang M, Hong R, Yuan X T, Yan S, Chua T S. Movie2Comics: towards a lively video content presentation. IEEE Transactions on Multimedia, 2012, 14(3): 858–870

[49]

Birchfield S T, Rangarajan S. Spatiograms versus histograms for region-based tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 1158–1163

[50]

Li J, Wu W, Wang T, Zhang Y. One step beyond histograms: image representation using Markov stationary features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1–8

[51]

Shang L, Chan K P, Hua X S. Real-time large scale near-duplicate web video retrieval. In: Proceedings of the 18th ACM International Conference on Multimedia. 2010, 531–540

[52]

Song J, Yang Y, Huang Z, Shen H T, Luo J. Effective multiple feature hashing for large-scale near-duplicate video retrieval. IEEE Transactions on Multimedia, 2013, 15(8): 1997–2008

[53]

Swain M J, Ballard D H. Color indexing. International Journal of Computer Vision, 1991, 7(1): 11–32

[54]

Bhat D N, Nayar S K. Ordinal measures for image correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4): 415–423

[55]

Dong W, Wang Z, Charikar M, Li K. Efficiently matching sets of features with random histograms. In: Proceedings of the 16th ACM International Conference on Multimedia. 2008, 179–188

[56]

Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 506–513

[57]

Ke Y, Sukthankar R, Huston L. Efficient near-duplicate detection and sub-image retrieval. In: Proceedings of ACM International Conference on Multimedia. 2004

[58]

Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110

[59]

Lowe D G. Object recognition from local scale-invariant features. In: Proceedings of IEEE International Conference on Computer Vision. 1999, 1150–1157

[60]

Bay H, Tuytelaars T, Van Gool L. SURF: speeded up robust features. In: Proceedings of European Conference on Computer Vision. 2006, 404–417

[61]

Yang G, Chen N, Jiang Q. A robust hashing algorithm based on SURF for video copy detection. Computers and Security, 2012, 31(1): 33–39

[62]

Hao Y, Mu T, Hong R, Wang M, An N, Goulermas J Y. Stochastic multiview hashing for large-scale near-duplicate video retrieval. IEEE Transactions on Multimedia, 2017, 19(1): 1–14

[63]

Zhao G, Pietikainen M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915–928

[64]

Hao Y,Mu T, Goulermas J Y, Jiang J, Hong R, Wang M. Unsupervised t-distributed video hashing and its deep hashing extension. IEEE Transactions on Image Processing, 2017, 26(11): 5531–5544

[65]

Chum O, Philbin J, Zisserman A. Near duplicate image detection: min-hash and TF-IDF weighting. In: Proceedings of the British Machine Vision Conference. 2008, 812–815

[66]

Jing W, Nie X, Cui C, Xi X, Yang G, Yin Y. Global-view hashing: harnessing global relations in near-duplicate video retrieval. World Wide Web, 2019, 22(2): 771–789

[67]

Nie X, Li X, Sun J, Yin Y. UFvH: unified feature video hashing for near-duplicate video retrieval. In: Proceedings of the Workshop on Visual Analysis in Smart and Connected Communities. 2017, 17–24

[68]

Law-To J, Buisson O, Gouet-Brunet V, Boujemaa N. Robust voting algorithm based on labels of behavior for video copy detection. In: Proceedings of the 14th ACM International Conference on Multimedia. 2006, 835–844

[69]

Zhang J R, Ren J Y, Chang F, Wood T L, Kender J R. Fast nearduplicate video retrieval via motion time series matching. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2012, 842–847

[70]

Chou C L, Chen H T, Chen Y C, Ho C P, Lee S Y. Near-duplicate video retrieval and localization using pattern set based dynamic programming. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2013, 1–6

[71]

Hua X S, Chen X, Zhang H J. Robust video signature based on ordinal measure. In: Proceedings of International Conference on Image Processing. 2004, 685–688

[72]

Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 15th International Conference on Neural Information Processing Systems. 2012, 1097–1105

[73]

Razavian A S, Sullivan J, Maki A, Carlsson S. A baseline for visual instance retrieval with deep convolutional networks. In: Proceedings of International Conference on Learning Representations. 2015

[74]

Razavian A S, Azizpour H, Sullivan J, Carlsson S. CNN features offthe- shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2014, 806–813

[75]

Xu Z, Yang Y, Hauptmann A G. A discriminative CNN video representation for event detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 1798–1807

[76]

Kordopatis-Zilos G, Papadopoulos S, Patras I, Kompatsiaris Y. Nearduplicate video retrieval by aggregating intermediate CNN layers. In: Proceedings of International Conference on Multimedia Modeling. 2017, 251–263

[77]

Tran D, Bourdev L, Fergus R, Torresani L, Paluri M. Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 4489–4497

[78]

Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014, 3104–3112

[79]

Zhang H, Wang M, Hong R, Chua T S. Play and rewind: optimizing binary representations of videos by self-supervised temporal hashing. In: Proceedings of the 2016 ACM Multimedia Conference. 2016, 781–790

[80]

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8), 1735–1780

[81]

Cho K, Van Merriénboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014, 1724–1734

[82]

Song J, Yang Y, Huang Z, Shen H T, Hong R. Multiple feature hashing for real-time large scale near-duplicate video retrieval. In: Proceedings of the 19th ACM International Conference on Multimedia. 2011, 423–432

[83]

Zhao W L, Tan S, Ngo C W. Large-scale near-duplicate web video search: challenge and opportunity. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2009, 1624–1627

[84]

Jiang Y G, Ngo C W. Visual word proximity and linguistics for semantic video indexing and near-duplicate retrieval. Computer Vision and Image Understanding, 2009, 113(3): 405–414

[85]

Liu L, Lai W, Hua X S, Yang S Q. Video histogram: a novel video signature for efficient web video duplicate detection. In: Proceedings of International Conference on Multimedia Modeling. 2007, 94–103

[86]

Huang Z, Shen H T, Shao J, Zhou X. Bounded coordinate system indexing for real-time video clip search. ACM Transactions on Information Systems, 2009, 27(3): 17

[87]

Shen H T, Ooi B C, Zhou X. Towards effective indexing for very large video sequence database. In: Proceedings of the 2005 ACMSIGMOD International Conference on Management of Data. 2005, 730–741

[88]

Kordopatis-Zilos G, Papadopoulos S, Patras I, Kompatsiaris Y. Nearduplicate video retrieval with deep metric learning. In: Proceedings of the IEEE International Conference on Computer Vision. 2017, 347–356

[89]

Böhm C, Berchtold S, Keim D A. Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases. ACM Computing Surveys, 2001, 33(3): 322–373

[90]

Snoek C G M, Worring M. Multimodal video indexing: a review of the state-of-the-art. Multimedia Tools and Applications, 2005, 25(1): 5–35

[91]

Boughorbel S, Tarel J P, Boujemaa N. Generalized histogram intersection kernel for image recognition. In: Proceedings of IEEE International Conference on Image Processing. 2005, 3: III–161

[92]

Wu J, Rehg J M. Beyond the Euclidean distance: creating effective visual codebooks using the histogram intersection kernel. In: Proceedings of the 12th IEEE International Conference on Computer Vision. 2009, 630–637

[93]

Jagadish H V, Ooi B C, Tan K L, Yu C, Zhang R. iDistance: an adaptive B+-tree based indexing method for nearest neighbor search. ACM Transactions on Database Systems, 2005, 30(2): 364–397

[94]

Bayer R, Mccreight E. Organization and Maintenance of Large Ordered Indexes. Software Pioneers, Springer, Berlin, Heidelberg, 2002, 245–262

[95]

Bohm C, Gruber M, Kunath P, Pryakhin A, Schubert M. Prover: probabilistic video retrieval using the gauss-tree. In: Proceedings of the 23rd IEEE International Conference on Data Engineering. 2007, 1521–1522

[96]

Chen M, Mao S, Liu Y. Big data: a survey. Mobile Networks and Applications, 2014, 19(2): 171–209

[97]

Wang J, Zhang T, Song J, Sebe N, Shen H T. A survey on learning to hash. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 769–790

[98]

Wang J, Shen H T, Song J, Song J, Ji J. Hashing for similarity search: a survey. 2014, arXiv preprint arXiv:1408.2927

[99]

Zhou X, Chen L, Zhou X. Structure tensor series-based large scale near-duplicate video retrieval. IEEE Transactions on Multimedia, 2012, 14(4): 1220–1233

[100]

Wang Y, Belkhatir M, Tahayna B. Near-duplicate video retrieval based on clustering by multiple sequence alignment. In: Proceedings of the 20th ACM International Conference on Multimedia. 2012, 941–944

[101]

Tan H K, Ngo C W, Chua T S. Efficient mining of multiple partial near-duplicate alignments by temporal network. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(11): 1486–1498

[102]

Ngo C W, Zhao W L, Jiang Y G. Fast tracking of near-duplicate keyframes in broadcast domain with transitivity propagation. In: Proceedings of the 14th ACM International Conference on Multimedia. 2006, 845–854

[103]

Donoser M, Bischof H. Diffusion processes for retrieval revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 1320–1327

[104]

Bai S, Bai X, Tian Q, Latecki L J. Regularized diffusion process on bidirectional context for object retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(5): 1213–1226

[105]

Mei T, Rui Y, Li S, Tian Q. Multimedia search reranking: a literature survey. ACM Computing Surveys, 2014, 46(3): 38

[106]

Bai S, Bai X. Sparse contextual activation for efficient visual reranking. IEEE Transactions on Image Processing, 2016, 25(3): 1056–1069

[107]

Over P, Awad G, Michel M, Fiscus J, Kraaij W, Smeaton A F. TRECVID 2009- goals, tasks, data, evaluation mechanisms and metrics. TRECVID 2009 papers, 2010, 1–42

[108]

Law-To J, Joly A, Boujemaa N. Muscle-VCD-2007: a live benchmark for video copy detection. Google Scholar, 2007

[109]

Ren J, Chang F, Wood T, Zhang J R. Efficient video copy detection via aligning video signature time series. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval. 2012, 14

[110]

Karpenko A, Aarabi P. Tiny videos: a large data set for nonparametric video retrieval and frame classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 618

[111]

Tan H K, Wu X, Ngo C W, Zhao W L. Accelerating near-duplicate video matching by combining visual similarity and alignment distortion. In: Proceedings of the 16th ACM International Conference on Multimedia. 2008, 861–864

[112]

Wu X, Ngo C W, Hauptmann A G, Tan H K. Real-rime near-duplicate elimination for web video search with content and context. IEEE Transactions on Multimedia, 2009, 11(2): 196–207

[113]

Venna J, Peltonen J, Nybo K, Aidos H, Kaski S. Information retrieval perspective to nonlinear dimensionality reduction for data visualization. Journal of Machine Learning Research, 2010, 11(1): 451–490

[114]

Hinton G E, Roweis S T. Stochastic neighbor embedding. In: Proceedings of the 15th International Conference on Neural Information Processing Systems. 2003, 857–864

[115]

Maaten L V D, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9(Nov): 2579–2605

[116]

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 1–9

[117]

Ali S R, Sullivan J, Maki A, Carlsson S. A baseline for visual instance retrieval with deep convolutional networks. In: Proceedings of International Conference on Learning Representations. 2015

[118]

Zheng L, Zhao Y, Wang S, Wang J, Tian Q. Good practice in CNN feature transfer. 2016, arXiv preprint arXiv:1604.00133

[119]

Peng Y, Qi J, Yuan Y. CM-GANs: cross-modal generative adversarial networks for common representation learning. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019, 15(1): 22

[120]

Zhang J, Peng Y, Yuan M. SCH-GAN: semi-supervised cross-modal hashing by generative adversarial network. IEEE Transactions on Cybernetics, 2018

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (666KB)

Supplementary files

Article highlights

1626

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/