Detection of common wound infection bacteria based on FAIMS technology

Shenyi QIAN, Daiyi LI, Tong SUN, Bin YU

PDF(191 KB)
PDF(191 KB)
Front. Comput. Sci. ›› 2019, Vol. 13 ›› Issue (4) : 907-909. DOI: 10.1007/s11704-019-8218-x
LETTER

Detection of common wound infection bacteria based on FAIMS technology

Author information +
History +

Cite this article

Download citation ▾
Shenyi QIAN, Daiyi LI, Tong SUN, Bin YU. Detection of common wound infection bacteria based on FAIMS technology. Front. Comput. Sci., 2019, 13(4): 907‒909 https://doi.org/10.1007/s11704-019-8218-x

References

[1]
Sheybani R, Anita S. Highly sensitive label-free dual sensor array for rapid detection of wound bacteria. Biosensors & Bioelectronics, 2017, 92: 425–433
CrossRef Google scholar
[2]
Wang Y, Wang H, Li J, Gao H. Efficient graph similarity join for information integration on graphs. Frontiers of Computer Science, 2016, 10(2): 317–329
CrossRef Google scholar
[3]
Riaz F, Hassan A, Rehman S, Qamar U. Texture classification using rotation- and scale-invariant gabor texture features. IEEE Signal Processing Letters, 2013, 20(6): 607–610
CrossRef Google scholar
[4]
Tan X Y, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 2010, 19(6): 1635–1650
CrossRef Google scholar
[5]
Cheng S M, Wang J, Ma Y H, Wang Y W. Discrimination of different types damage of tomato seedling by electronic nose. Chinese Journal of Sensors & Actuators, 2012, 25(9): 1184–1188

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(191 KB)

Accesses

Citations

Detail

Sections
Recommended

/