Detection of common wound infection bacteria based on FAIMS technology

Shenyi QIAN , Daiyi LI , Tong SUN , Bin YU

Front. Comput. Sci. ›› 2019, Vol. 13 ›› Issue (4) : 907 -909.

PDF (191KB)
Front. Comput. Sci. ›› 2019, Vol. 13 ›› Issue (4) : 907 -909. DOI: 10.1007/s11704-019-8218-x
LETTER

Detection of common wound infection bacteria based on FAIMS technology

Author information +
History +
PDF (191KB)

Cite this article

Download citation ▾
Shenyi QIAN, Daiyi LI, Tong SUN, Bin YU. Detection of common wound infection bacteria based on FAIMS technology. Front. Comput. Sci., 2019, 13(4): 907-909 DOI:10.1007/s11704-019-8218-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sheybani R, Anita S. Highly sensitive label-free dual sensor array for rapid detection of wound bacteria. Biosensors & Bioelectronics, 2017, 92: 425–433

[2]

Wang Y, Wang H, Li J, Gao H. Efficient graph similarity join for information integration on graphs. Frontiers of Computer Science, 2016, 10(2): 317–329

[3]

Riaz F, Hassan A, Rehman S, Qamar U. Texture classification using rotation- and scale-invariant gabor texture features. IEEE Signal Processing Letters, 2013, 20(6): 607–610

[4]

Tan X Y, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 2010, 19(6): 1635–1650

[5]

Cheng S M, Wang J, Ma Y H, Wang Y W. Discrimination of different types damage of tomato seedling by electronic nose. Chinese Journal of Sensors & Actuators, 2012, 25(9): 1184–1188

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (191KB)

Supplementary files

Article highlights

742

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/