Center-based clustering of categorical data using kernel smoothing methods

Xuanhui YAN , Lifei CHEN , Gongde GUO

Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (5) : 1032 -1034.

PDF (210KB)
Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (5) : 1032 -1034. DOI: 10.1007/s11704-018-7186-x
LETTER

Center-based clustering of categorical data using kernel smoothing methods

Author information +
History +
PDF (210KB)

Cite this article

Download citation ▾
Xuanhui YAN, Lifei CHEN, Gongde GUO. Center-based clustering of categorical data using kernel smoothing methods. Front. Comput. Sci., 2018, 12(5): 1032-1034 DOI:10.1007/s11704-018-7186-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jain A K, Murty M N, Flynn P J. Data clustering: a review. ACM Computing Survey, 1999, 31(3): 264–323

[2]

Jing L, Ng M K, Huang J Z. An entropy weighting K-means algorithm for subspace clustering of high-dimensinoal sparse data. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8): 1–16

[3]

Sun H, Wang S, Jiang Q. FCM-based model selection algorithms for determining the number of clusters. Pattern Recognition, 2004, 37(10): 2027–2037

[4]

Ouyang D, Li Q, Racine J. Cross-validation and the estimation of probability distributions with categorical data. Nonparametric Statistics, 2006, 18(1): 69–100

[5]

Bai L, Liang J, Dang C, Cao F. A novel attribute weighting algorithm for clustering high-dimensional categorical data. Pattern Recognition, 2011, 44(12): 2843–2861

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (210KB)

Supplementary files

Supplementary Material

861

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/