Center-based clustering of categorical data using kernel smoothing methods

Xuanhui YAN, Lifei CHEN, Gongde GUO

PDF(210 KB)
PDF(210 KB)
Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (5) : 1032-1034. DOI: 10.1007/s11704-018-7186-x
LETTER

Center-based clustering of categorical data using kernel smoothing methods

Author information +
History +

Cite this article

Download citation ▾
Xuanhui YAN, Lifei CHEN, Gongde GUO. Center-based clustering of categorical data using kernel smoothing methods. Front. Comput. Sci., 2018, 12(5): 1032‒1034 https://doi.org/10.1007/s11704-018-7186-x

References

[1]
Jain A K, Murty M N, Flynn P J. Data clustering: a review. ACM Computing Survey, 1999, 31(3): 264–323
CrossRef Google scholar
[2]
Jing L, Ng M K, Huang J Z. An entropy weighting K-means algorithm for subspace clustering of high-dimensinoal sparse data. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8): 1–16
CrossRef Google scholar
[3]
Sun H, Wang S, Jiang Q. FCM-based model selection algorithms for determining the number of clusters. Pattern Recognition, 2004, 37(10): 2027–2037
CrossRef Google scholar
[4]
Ouyang D, Li Q, Racine J. Cross-validation and the estimation of probability distributions with categorical data. Nonparametric Statistics, 2006, 18(1): 69–100
CrossRef Google scholar
[5]
Bai L, Liang J, Dang C, Cao F. A novel attribute weighting algorithm for clustering high-dimensional categorical data. Pattern Recognition, 2011, 44(12): 2843–2861
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(210 KB)

Accesses

Citations

Detail

Sections
Recommended

/