Center-based clustering of categorical data using kernel smoothing methods
Xuanhui YAN, Lifei CHEN, Gongde GUO
Center-based clustering of categorical data using kernel smoothing methods
[1] |
Jain A K, Murty M N, Flynn P J. Data clustering: a review. ACM Computing Survey, 1999, 31(3): 264–323
CrossRef
Google scholar
|
[2] |
Jing L, Ng M K, Huang J Z. An entropy weighting K-means algorithm for subspace clustering of high-dimensinoal sparse data. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8): 1–16
CrossRef
Google scholar
|
[3] |
Sun H, Wang S, Jiang Q. FCM-based model selection algorithms for determining the number of clusters. Pattern Recognition, 2004, 37(10): 2027–2037
CrossRef
Google scholar
|
[4] |
Ouyang D, Li Q, Racine J. Cross-validation and the estimation of probability distributions with categorical data. Nonparametric Statistics, 2006, 18(1): 69–100
CrossRef
Google scholar
|
[5] |
Bai L, Liang J, Dang C, Cao F. A novel attribute weighting algorithm for clustering high-dimensional categorical data. Pattern Recognition, 2011, 44(12): 2843–2861
CrossRef
Google scholar
|
/
〈 | 〉 |