Learnware: on the future of machine learning

Zhi-Hua ZHOU

Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 589 -590.

PDF (264KB)
Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 589 -590. DOI: 10.1007/s11704-016-6906-3
PERSPECTIVE

Learnware: on the future of machine learning

Author information +
History +
PDF (264KB)

Cite this article

Download citation ▾
Zhi-Hua ZHOU. Learnware: on the future of machine learning. Front. Comput. Sci., 2016, 10(4): 589-590 DOI:10.1007/s11704-016-6906-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li N, Tsang IW, Zhou Z H. Efficient optimization of performance measures by classifier adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1370–1382

[2]

Pan S J, Yang Q. A survey of transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345–1359

[3]

Sugiyama M, Kawanabe M. Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation. Cambridge, MA: MIT Press, 2012

[4]

Da Q, Yu Y, Zhou Z H. Learning with augmented class by exploiting unlabeled data. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence. 2014, 1760–1766

[5]

Mu X, Ting K M, Zhou Z H. Classification under streaming emerging new classes: a solution using completely random trees. CORR abs/1605.09131, 2016

[6]

Hou C, Zhou Z H. One-pass learning with incremental and decremental features. CORR abs/1605.09082, 2016

[7]

Dietterich T G. Towards robust artificial intelligence. AAAI Presidential Address at the 30th AAAI Conference on Artificial Intelligence. 2016

[8]

Zhou Z H, Jiang Y, Chen S F. Extracting symbolic rules from trained neural network ensembles. AI Communications, 2003, 16(1): 3–15

[9]

Zhou Z H, Jiang Y. NeC4.5: Neural ensemble based C4.5. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(6): 770–773

[10]

Zhou Z H. Ensemble Methods: Foundations and Algorithms. Boca Raton, FL: CRC Press, 2012

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (264KB)

1655

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/