Learnware: on the future of machine learning

Zhi-Hua ZHOU

PDF(264 KB)
PDF(264 KB)
Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 589-590. DOI: 10.1007/s11704-016-6906-3
PERSPECTIVE

Learnware: on the future of machine learning

Author information +
History +

Cite this article

Download citation ▾
Zhi-Hua ZHOU. Learnware: on the future of machine learning. Front. Comput. Sci., 2016, 10(4): 589‒590 https://doi.org/10.1007/s11704-016-6906-3

References

[1]
Li N, Tsang IW, Zhou Z H. Efficient optimization of performance measures by classifier adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1370–1382
CrossRef Google scholar
[2]
Pan S J, Yang Q. A survey of transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345–1359
CrossRef Google scholar
[3]
Sugiyama M, Kawanabe M. Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation. Cambridge, MA: MIT Press, 2012
CrossRef Google scholar
[4]
Da Q, Yu Y, Zhou Z H. Learning with augmented class by exploiting unlabeled data. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence. 2014, 1760–1766
[5]
Mu X, Ting K M, Zhou Z H. Classification under streaming emerging new classes: a solution using completely random trees. CORR abs/1605.09131, 2016
[6]
Hou C, Zhou Z H. One-pass learning with incremental and decremental features. CORR abs/1605.09082, 2016
[7]
Dietterich T G. Towards robust artificial intelligence. AAAI Presidential Address at the 30th AAAI Conference on Artificial Intelligence. 2016
[8]
Zhou Z H, Jiang Y, Chen S F. Extracting symbolic rules from trained neural network ensembles. AI Communications, 2003, 16(1): 3–15
[9]
Zhou Z H, Jiang Y. NeC4.5: Neural ensemble based C4.5. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(6): 770–773
CrossRef Google scholar
[10]
Zhou Z H. Ensemble Methods: Foundations and Algorithms. Boca Raton, FL: CRC Press, 2012

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(264 KB)

Accesses

Citations

Detail

Sections
Recommended

/