Detailed and clock-driven simulation for HPC interconnection network
Wenhao ZHOU, Juan CHEN, Chen CUI, Qian WANG, Dezun DONG, Yuhua TANG
Detailed and clock-driven simulation for HPC interconnection network
Performance and energy consumption of high performance computing (HPC) interconnection networks have a great significance in the whole supercomputer, and building up HPC interconnection network simulation platform is very important for the research on HPC software and hardware technologies. To effectively evaluate the performance and energy consumption of HPC interconnection networks, this article designs and implements a detailed and clock-driven HPC interconnection network simulation platform, called HPC-NetSim. HPC-NetSim uses applicationdriven workloads and inherits the characteristics of the detailed and flexible cycle-accurate network simulator. Besides, it offers a large set of configurable network parameters in terms of topology and routing, and supports router’s on/off states.We compare the simulated execution time with the real execution time of Tianhe-2 subsystem and the mean error is only 2.7%. In addition, we simulate the network behaviors with different network structures and low-power modes. The results are also consistent with the theoretical analyses.
high performance computing / clock-driven simulation / interconnection network / BookSim
[1] |
Dongarra J J, Meuer H W, Strohmaier E. TOP500 supercomputer sites. Supercomputer, 1997, 13: 89–111
|
[2] |
Pang Z B, Xie M, Zhang J, Zheng Y, Wang G B, Dong D Z, Suo G. The TH Express high performance interconnect networks. Frontiers of Computer Science, 2014, 8(3): 357–366
CrossRef
Google scholar
|
[3] |
Raponi P G, Petrini F, Walkup R, Checconi F. Characterization of the communication patterns of scientific applications on Blue Gene/P. In: Proceedings of 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW). 2011: 1017–1024
CrossRef
Google scholar
|
[4] |
Kogge P M. Architectural challenges at the exascale frontier (invited talk). Simulating the Future: Using One Million Cores and Beyond, 2008
|
[5] |
Abts D, Marty M R, Wells P M, Klausler P, Liu H. Energy proportional datacenter networks. In: Proceedings of the 37th Annual International Symposium on Computer Architecture. 2010, 338–347
CrossRef
Google scholar
|
[6] |
Shalf J, Dosanjh S, Morrison J. Exascale Computing Technology Challenges. In: Palma JMLM, Daydé M, Marques O, Lopes J C, <Eds/>. High Performance Computing for Computational Science lCVECPAR 2010. Berkeley, CA: Springer Berlin Heidelberg, 2011, 1–25
CrossRef
Google scholar
|
[7] |
Alonso M, Coll S, Martinez J M, Santonja V, Duato J. Dynamic power saving in fat-tree interconnection networks using on/off links. In: Pro ceedings of the 20th International. IEEE Parallel and Distributed Processing Symposium. 2006
|
[8] |
Raghunathan V, Srivastava M B, Gupta R K. A survey of techniques for energy ecient on-chip communication. In: Proceedings of the 40th Annual Design Automation Conference. 2003, 900–905
|
[9] |
Deveci M, Rajamanickam S, Leung V J, Pedretti K, Olivier S L, Bunde D P, Çatalyürek U V, Devine K. Exploiting geometricpartitioning in task mapping for parallel computers. In: Proceedings of the 28th International IEEE Parallel and Distributed Processing Symposium. 2014, 27–36
|
[10] |
Zhang P, Gao Y, Fierson J, Deng Y F. Eigenanalysis-based task mapping on parallel computers with cellular networks. Mathematics of Computation, 2014, 83(288): 1727–1756
CrossRef
Google scholar
|
[11] |
Jiang N, Balfour J, Becker D U, Towies B, Dally W J, Michelogiannakis G, Kim J. A detailed and flexible cycle-accurate Network-on- Chip simulator. In: Proceedings of 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). 2013, 86–96
CrossRef
Google scholar
|
[12] |
Agarwal N, Krishna T, Peh L S, Jha N K. GARNET: A detailed onchipnetwork model inside a full-system simulator. In: Proceedings of 2009 IEEE International Symposium on Performance Analysis of Systems and Software. 2009, 33–42
CrossRef
Google scholar
|
[13] |
Zhai J D, Chen W G, Zheng W M. PHANTOM: predicting performance of parallel applications on large-scale parallel machines using a single node. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles of Parellel Programming. 2010, 305–314
CrossRef
Google scholar
|
[14] |
Denzel W E, Li J, Walker P, Jin Y. A framework for end-to-end simulation of high-performance computing systems. Simulation, 2010, 86(5–6): 331–350
CrossRef
Google scholar
|
[15] |
Wilke J J, Kenny J P. Using discrete event simulation for programming model exploration at extreme-scale: macroscale components for the structural simulation toolkit (SST). Sandia Report SAND2015-1027, Sandia National Laboratories, 2015
|
[16] |
Binkert N, Beckmann B, Black G, Reinhardt S T, Saidi A, Basu A, Hestness J, Hower D R, Krishna T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill M D, Wood D A. The gem5 simulator. ACMSIGARCH Computer Architecture News, 2011, 39(2): 1–7
CrossRef
Google scholar
|
[17] |
Peno B, Wagner A, Tuxen M, Rüngeler I. MPI-NeTSim: a network simulation module for MPI. In: Proceedings of the 15th IEEE International Conference on Parallel and Distributed Systems (ICPADS). 2009, 464–471
|
[18] |
Zheng G, Kakulapati G, Kale L V. BigSim: a parallel simulator for performance prediction of extremely large parallel machines. In: Proceedings of the 18th International IEEE Parallel and Distributed Processing Symposium. 2004
|
[19] |
Dally W J, Towles B P. Principles and Practices of Interconnection Networks. San Francisco, CA: Elsevier, 2004
|
[20] |
Culler D, Karp R, Patterson D, Sahay A, Schauser K E, Santos E, Subramonian R, von Eicken T. LogP: towards a realistic model of parallel computation. In: Proceedings of the 4th ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming. 1993, 1–12
CrossRef
Google scholar
|
[21] |
Alexandrov A, Ionescu M F, Schauser K E, Scheiman C. LogGP: incorporating long messages into the LogP modela—one step closer towards a realisticmodel for parallel computation. In: Proceedings of the 7th Annual ACM symposium on Parallel Algorithms and Architectures. 1995, 95–105
CrossRef
Google scholar
|
[22] |
Moritz C A, Frank M I. LoGPC: Modeling network contention in message-passing programs. In: Proceedings of the 1998 ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems. 1998, 254–263
CrossRef
Google scholar
|
[23] |
Chen W G, Zhai J D, Zhang J, Zheng W M. LogGPO: an accurate communication model for performance prediction of MPI programs. Science in China Series F: Information Sciences, 2009, 52(10): 1785–1791
CrossRef
Google scholar
|
[24] |
Liao X K, Xiao L Q, Yang C Q, Lu Y T. MilkyWay-2 supercomputer: system and application. Frontiers of Computer Science, 2014, 8(3): 345–356
CrossRef
Google scholar
|
[25] |
Kelton W D, Law A M. Simulation Modeling and Analysis. Boston: McGraw Hill, 2000
|
[26] |
Varga A. The OMNeT++ discrete event simulation system. In: Proceedings of the European Simulation Multiconference. 2001
|
[27] |
Gropp W. MPICH2: a new start for MPI implementations. In: Kranzlmüller D, Volkert J, Kacsuk P, Dongarra J<Eds/>. Recent Advances in Parallel Virtual Machine and Message Passing Interface. Springer Berlin Heidelberg, 2002: 7
CrossRef
Google scholar
|
[28] |
Gabriel E, Fagg G E, Bosilca G, Angskun T, Dongrra J J, Squyres J M, Sahay V, Kambadur P, Barrett B, Lumsdaine A, Castain R H, Daniel D J, Graham R L, Woodall T S. Open MPI: goals, concept, and design of a next generation MPI implementation. In: Kranzlmüller D, Kacsuk P, Dongarra J, <Eds/>. Recent Advances in Parallel Virtual Machine and Message Passing Interface. Springer Berlin Heidelberg, 2004: 97–104
CrossRef
Google scholar
|
[29] |
Kim M S, Son D M, Ko Y B, Kim Y H. A simulation study of the PLC-MAC performance using network simulator-2. In: Proceedings of 2008 IEEE International Symposium on Power Line Communications and Its Applications. 2008, 99–104
|
[30] |
Vetter J S, Mueller F. Communication characteristics of large-scale scientific applications for contemporary cluster architectures. Journal of Parallel and Distributed Computing, 2003, 63(9): 853–865
CrossRef
Google scholar
|
[31] |
Becker D, Wolf F, Frings W, Geimer M, Wylie B J N, Mohr B. Automatic trace-based performance analysis of metacomputing applications. In: Proceedings of 2007 IEEE International Parallel and Distributed Processing Symposium. 2007, 1–10
CrossRef
Google scholar
|
[32] |
Nagel W E, Arnold A, Weber M, Hoppe H S, Solchenbach K. VAMPIR: visualization and analysis of MPI resources. MD5 SHA512, 1996
|
[33] |
Mohr B, Wolf F. KOJAK—a tool set for automatic performance analysis of parallel programs. In: Kosch H, Böszörményi L, Hellwagner H, <Eds/>. Euro-Par 2003 Parallel Processing. Springer Berlin Heidelberg, 2003: 1301–1304
CrossRef
Google scholar
|
[34] |
Shende S S, Malony A D. The Tau parallel performance system. International Journal of High Performance Computing Applications, 2006, 20(2): 287–311
CrossRef
Google scholar
|
[35] |
O’Carroll F, Tezuka H, Hori A, Ishikawa Y. The design and implementation of zero copy MPI using commodity hardware with a high performance network. In: Proceedings of the 12th ACM International Conference on Supercomputing. 1998, 243–250
CrossRef
Google scholar
|
[36] |
Padovano M. System and method for accessing a storage area network as network attached storage. US Patent, 6606690, <Date>2003-08-12</Date>
|
[37] |
Hamada T, Nakasato N. InfiniBand Trade Association, InfiniBand architecture specification: release 1.0. In: Proceedings of 2005 International Conference on Field Programmable Logic and Applications. 2005
|
[38] |
Xie M, Lu Y, Wang K F, Liu L, Cao H J, Yang X J. Tianhe-1A interconnect and message-passing services. IEEE Micro, 2011 (1): 8–20
|
[39] |
Wu J, Liao X K, Dong D Z, Wang L, Li C L. HVCRouter: energy ecient networkon-chip router with heterogeneous virtual channels. In: Wang G J, Zomaya A, Perez G M, Li K L, <Eds/>. Algorithms and Architectures for Parallel Processing. Springer International Publishing, 2015: 199–213
CrossRef
Google scholar
|
[40] |
Ma S, Jerger N E, Wang Z Y. DBAR: an effcient routing algorithm to support multiple concurrent applications in networks-on-chip. In: Proceedings of the 38th Annual International Symposium on Computer Architecture (ISCA). 2011, 413–424
CrossRef
Google scholar
|
[41] |
Chen J, Zhou W, Ben C. Supremum of idle routers on 2D-mesh with dimension-order routing. Journal of Computational Information Systems, 2014, 10(22): 9897–9906
|
[42] |
Lusk E, Huss S, Saphir B, Snir M. MPI: a message-passing interface standard. 2009
|
[43] |
Li J, Huang W, Lefurgy C, Zhang L X, Denzel W E, Treumann R R, Wang K. Power shifting in thrifty interconnection network. In: Proceedings of the 17th IEEE International Symposium on High Performance Computer Architecture (HPCA). 2011, 156–167
CrossRef
Google scholar
|
[44] |
Liao X K. MilkyWay-2: back to the world Top 1. Frontiers of Computer Science, 2014, 8(3): 343–344
CrossRef
Google scholar
|
[45] |
Bailey D H, Barszcz E, Barton J T, Browning D S, Carter R L, Dagum L, Fatoohi R A, Frederickson P O, Lasinski T A, Schreiber R S, Simon H D, Venkatakrishnan V, Weeratunga S K. The NAS parallel benchmarks. International Journal of High Performance Computing Applications, 1991, 5(3): 63–73
CrossRef
Google scholar
|
[46] |
Initiative A S C. The ASCI sweep3d benchmark code. 1995
|
[47] |
Velho P, Legrand A. Accuracy study and improvement of network simulation in the SimGrid framework. In: Proceedings of the 2nd International Conference on Simulation Tools and Techniques. 2009, 13
CrossRef
Google scholar
|
[48] |
Tabe T B, Stout Q F. The use of the MPI communication library in the NAS parallel benchmarks. Ann Arbor, 1999(1001): 48109
|
[49] |
Matsutani H, Koibuchi M, Wang D, Amano H. Run-time power gating of on-chip routers using look-ahead routing. In: Proceedings of the 2008 Asia and South Pacific Design Automation Conference. 2008, 55–60
CrossRef
Google scholar
|
[50] |
Mihic K, Simunic T, DeMicheli G. Reliability and power management of integrated systems. In: Proceedings of 2004 IEEE Euromicro Symposium on Digital System Design. 2004, 5–11
CrossRef
Google scholar
|
/
〈 | 〉 |