Detailed and clock-driven simulation for HPC interconnection network

Wenhao ZHOU , Juan CHEN , Chen CUI , Qian WANG , Dezun DONG , Yuhua TANG

Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (5) : 797 -811.

PDF (1186KB)
Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (5) : 797 -811. DOI: 10.1007/s11704-016-5035-3
RESEARCH ARTICLE

Detailed and clock-driven simulation for HPC interconnection network

Author information +
History +
PDF (1186KB)

Abstract

Performance and energy consumption of high performance computing (HPC) interconnection networks have a great significance in the whole supercomputer, and building up HPC interconnection network simulation platform is very important for the research on HPC software and hardware technologies. To effectively evaluate the performance and energy consumption of HPC interconnection networks, this article designs and implements a detailed and clock-driven HPC interconnection network simulation platform, called HPC-NetSim. HPC-NetSim uses applicationdriven workloads and inherits the characteristics of the detailed and flexible cycle-accurate network simulator. Besides, it offers a large set of configurable network parameters in terms of topology and routing, and supports router’s on/off states.We compare the simulated execution time with the real execution time of Tianhe-2 subsystem and the mean error is only 2.7%. In addition, we simulate the network behaviors with different network structures and low-power modes. The results are also consistent with the theoretical analyses.

Keywords

high performance computing / clock-driven simulation / interconnection network / BookSim

Cite this article

Download citation ▾
Wenhao ZHOU, Juan CHEN, Chen CUI, Qian WANG, Dezun DONG, Yuhua TANG. Detailed and clock-driven simulation for HPC interconnection network. Front. Comput. Sci., 2016, 10(5): 797-811 DOI:10.1007/s11704-016-5035-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dongarra J J, Meuer H W, Strohmaier E. TOP500 supercomputer sites. Supercomputer, 1997, 13: 89–111

[2]

Pang Z B, Xie M, Zhang J, Zheng Y, Wang G B, Dong D Z, Suo G. The TH Express high performance interconnect networks. Frontiers of Computer Science, 2014, 8(3): 357–366

[3]

Raponi P G, Petrini F, Walkup R, Checconi F. Characterization of the communication patterns of scientific applications on Blue Gene/P. In: Proceedings of 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW). 2011: 1017–1024

[4]

Kogge P M. Architectural challenges at the exascale frontier (invited talk). Simulating the Future: Using One Million Cores and Beyond, 2008

[5]

Abts D, Marty M R, Wells P M, Klausler P, Liu H. Energy proportional datacenter networks. In: Proceedings of the 37th Annual International Symposium on Computer Architecture. 2010, 338–347

[6]

Shalf J, Dosanjh S, Morrison J. Exascale Computing Technology Challenges. In: Palma JMLM, Daydé M, Marques O, Lopes J C, <Eds/>. High Performance Computing for Computational Science lCVECPAR 2010. Berkeley, CA: Springer Berlin Heidelberg, 2011, 1–25

[7]

Alonso M, Coll S, Martinez J M, Santonja V, Duato J. Dynamic power saving in fat-tree interconnection networks using on/off links. In: Pro ceedings of the 20th International. IEEE Parallel and Distributed Processing Symposium. 2006

[8]

Raghunathan V, Srivastava M B, Gupta R K. A survey of techniques for energy ecient on-chip communication. In: Proceedings of the 40th Annual Design Automation Conference. 2003, 900–905

[9]

Deveci M, Rajamanickam S, Leung V J, Pedretti K, Olivier S L, Bunde D P, Çatalyürek U V, Devine K. Exploiting geometricpartitioning in task mapping for parallel computers. In: Proceedings of the 28th International IEEE Parallel and Distributed Processing Symposium. 2014, 27–36

[10]

Zhang P, Gao Y, Fierson J, Deng Y F. Eigenanalysis-based task mapping on parallel computers with cellular networks. Mathematics of Computation, 2014, 83(288): 1727–1756

[11]

Jiang N, Balfour J, Becker D U, Towies B, Dally W J, Michelogiannakis G, Kim J. A detailed and flexible cycle-accurate Network-on- Chip simulator. In: Proceedings of 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). 2013, 86–96

[12]

Agarwal N, Krishna T, Peh L S, Jha N K. GARNET: A detailed onchipnetwork model inside a full-system simulator. In: Proceedings of 2009 IEEE International Symposium on Performance Analysis of Systems and Software. 2009, 33–42

[13]

Zhai J D, Chen W G, Zheng W M. PHANTOM: predicting performance of parallel applications on large-scale parallel machines using a single node. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles of Parellel Programming. 2010, 305–314

[14]

Denzel W E, Li J, Walker P, Jin Y. A framework for end-to-end simulation of high-performance computing systems. Simulation, 2010, 86(5–6): 331–350

[15]

Wilke J J, Kenny J P. Using discrete event simulation for programming model exploration at extreme-scale: macroscale components for the structural simulation toolkit (SST). Sandia Report SAND2015-1027, Sandia National Laboratories, 2015

[16]

Binkert N, Beckmann B, Black G, Reinhardt S T, Saidi A, Basu A, Hestness J, Hower D R, Krishna T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill M D, Wood D A. The gem5 simulator. ACMSIGARCH Computer Architecture News, 2011, 39(2): 1–7

[17]

Peno B, Wagner A, Tuxen M, Rüngeler I. MPI-NeTSim: a network simulation module for MPI. In: Proceedings of the 15th IEEE International Conference on Parallel and Distributed Systems (ICPADS). 2009, 464–471

[18]

Zheng G, Kakulapati G, Kale L V. BigSim: a parallel simulator for performance prediction of extremely large parallel machines. In: Proceedings of the 18th International IEEE Parallel and Distributed Processing Symposium. 2004

[19]

Dally W J, Towles B P. Principles and Practices of Interconnection Networks. San Francisco, CA: Elsevier, 2004

[20]

Culler D, Karp R, Patterson D, Sahay A, Schauser K E, Santos E, Subramonian R, von Eicken T. LogP: towards a realistic model of parallel computation. In: Proceedings of the 4th ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming. 1993, 1–12

[21]

Alexandrov A, Ionescu M F, Schauser K E, Scheiman C. LogGP: incorporating long messages into the LogP modela—one step closer towards a realisticmodel for parallel computation. In: Proceedings of the 7th Annual ACM symposium on Parallel Algorithms and Architectures. 1995, 95–105

[22]

Moritz C A, Frank M I. LoGPC: Modeling network contention in message-passing programs. In: Proceedings of the 1998 ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems. 1998, 254–263

[23]

Chen W G, Zhai J D, Zhang J, Zheng W M. LogGPO: an accurate communication model for performance prediction of MPI programs. Science in China Series F: Information Sciences, 2009, 52(10): 1785–1791

[24]

Liao X K, Xiao L Q, Yang C Q, Lu Y T. MilkyWay-2 supercomputer: system and application. Frontiers of Computer Science, 2014, 8(3): 345–356

[25]

Kelton W D, Law A M. Simulation Modeling and Analysis. Boston: McGraw Hill, 2000

[26]

Varga A. The OMNeT++ discrete event simulation system. In: Proceedings of the European Simulation Multiconference. 2001

[27]

Gropp W. MPICH2: a new start for MPI implementations. In: Kranzlmüller D, Volkert J, Kacsuk P, Dongarra J<Eds/>. Recent Advances in Parallel Virtual Machine and Message Passing Interface. Springer Berlin Heidelberg, 2002: 7

[28]

Gabriel E, Fagg G E, Bosilca G, Angskun T, Dongrra J J, Squyres J M, Sahay V, Kambadur P, Barrett B, Lumsdaine A, Castain R H, Daniel D J, Graham R L, Woodall T S. Open MPI: goals, concept, and design of a next generation MPI implementation. In: Kranzlmüller D, Kacsuk P, Dongarra J, <Eds/>. Recent Advances in Parallel Virtual Machine and Message Passing Interface. Springer Berlin Heidelberg, 2004: 97–104

[29]

Kim M S, Son D M, Ko Y B, Kim Y H. A simulation study of the PLC-MAC performance using network simulator-2. In: Proceedings of 2008 IEEE International Symposium on Power Line Communications and Its Applications. 2008, 99–104

[30]

Vetter J S, Mueller F. Communication characteristics of large-scale scientific applications for contemporary cluster architectures. Journal of Parallel and Distributed Computing, 2003, 63(9): 853–865

[31]

Becker D, Wolf F, Frings W, Geimer M, Wylie B J N, Mohr B. Automatic trace-based performance analysis of metacomputing applications. In: Proceedings of 2007 IEEE International Parallel and Distributed Processing Symposium. 2007, 1–10

[32]

Nagel W E, Arnold A, Weber M, Hoppe H S, Solchenbach K. VAMPIR: visualization and analysis of MPI resources. MD5 SHA512, 1996

[33]

Mohr B, Wolf F. KOJAK—a tool set for automatic performance analysis of parallel programs. In: Kosch H, Böszörményi L, Hellwagner H, <Eds/>. Euro-Par 2003 Parallel Processing. Springer Berlin Heidelberg, 2003: 1301–1304

[34]

Shende S S, Malony A D. The Tau parallel performance system. International Journal of High Performance Computing Applications, 2006, 20(2): 287–311

[35]

O’Carroll F, Tezuka H, Hori A, Ishikawa Y. The design and implementation of zero copy MPI using commodity hardware with a high performance network. In: Proceedings of the 12th ACM International Conference on Supercomputing. 1998, 243–250

[36]

Padovano M. System and method for accessing a storage area network as network attached storage. US Patent, 6606690, <Date>2003-08-12</Date>

[37]

Hamada T, Nakasato N. InfiniBand Trade Association, InfiniBand architecture specification: release 1.0. In: Proceedings of 2005 International Conference on Field Programmable Logic and Applications. 2005

[38]

Xie M, Lu Y, Wang K F, Liu L, Cao H J, Yang X J. Tianhe-1A interconnect and message-passing services. IEEE Micro, 2011 (1): 8–20

[39]

Wu J, Liao X K, Dong D Z, Wang L, Li C L. HVCRouter: energy ecient networkon-chip router with heterogeneous virtual channels. In: Wang G J, Zomaya A, Perez G M, Li K L, <Eds/>. Algorithms and Architectures for Parallel Processing. Springer International Publishing, 2015: 199–213

[40]

Ma S, Jerger N E, Wang Z Y. DBAR: an effcient routing algorithm to support multiple concurrent applications in networks-on-chip. In: Proceedings of the 38th Annual International Symposium on Computer Architecture (ISCA). 2011, 413–424

[41]

Chen J, Zhou W, Ben C. Supremum of idle routers on 2D-mesh with dimension-order routing. Journal of Computational Information Systems, 2014, 10(22): 9897–9906

[42]

Lusk E, Huss S, Saphir B, Snir M. MPI: a message-passing interface standard. 2009

[43]

Li J, Huang W, Lefurgy C, Zhang L X, Denzel W E, Treumann R R, Wang K. Power shifting in thrifty interconnection network. In: Proceedings of the 17th IEEE International Symposium on High Performance Computer Architecture (HPCA). 2011, 156–167

[44]

Liao X K. MilkyWay-2: back to the world Top 1. Frontiers of Computer Science, 2014, 8(3): 343–344

[45]

Bailey D H, Barszcz E, Barton J T, Browning D S, Carter R L, Dagum L, Fatoohi R A, Frederickson P O, Lasinski T A, Schreiber R S, Simon H D, Venkatakrishnan V, Weeratunga S K. The NAS parallel benchmarks. International Journal of High Performance Computing Applications, 1991, 5(3): 63–73

[46]

Initiative A S C. The ASCI sweep3d benchmark code. 1995

[47]

Velho P, Legrand A. Accuracy study and improvement of network simulation in the SimGrid framework. In: Proceedings of the 2nd International Conference on Simulation Tools and Techniques. 2009, 13

[48]

Tabe T B, Stout Q F. The use of the MPI communication library in the NAS parallel benchmarks. Ann Arbor, 1999(1001): 48109

[49]

Matsutani H, Koibuchi M, Wang D, Amano H. Run-time power gating of on-chip routers using look-ahead routing. In: Proceedings of the 2008 Asia and South Pacific Design Automation Conference. 2008, 55–60

[50]

Mihic K, Simunic T, DeMicheli G. Reliability and power management of integrated systems. In: Proceedings of 2004 IEEE Euromicro Symposium on Digital System Design. 2004, 5–11

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1186KB)

Supplementary files

 Supplementary Material

982

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/