Detailed and clock-driven simulation for HPC interconnection network

Wenhao ZHOU, Juan CHEN, Chen CUI, Qian WANG, Dezun DONG, Yuhua TANG

PDF(1186 KB)
PDF(1186 KB)
Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (5) : 797-811. DOI: 10.1007/s11704-016-5035-3
RESEARCH ARTICLE

Detailed and clock-driven simulation for HPC interconnection network

Author information +
History +

Abstract

Performance and energy consumption of high performance computing (HPC) interconnection networks have a great significance in the whole supercomputer, and building up HPC interconnection network simulation platform is very important for the research on HPC software and hardware technologies. To effectively evaluate the performance and energy consumption of HPC interconnection networks, this article designs and implements a detailed and clock-driven HPC interconnection network simulation platform, called HPC-NetSim. HPC-NetSim uses applicationdriven workloads and inherits the characteristics of the detailed and flexible cycle-accurate network simulator. Besides, it offers a large set of configurable network parameters in terms of topology and routing, and supports router’s on/off states.We compare the simulated execution time with the real execution time of Tianhe-2 subsystem and the mean error is only 2.7%. In addition, we simulate the network behaviors with different network structures and low-power modes. The results are also consistent with the theoretical analyses.

Keywords

high performance computing / clock-driven simulation / interconnection network / BookSim

Cite this article

Download citation ▾
Wenhao ZHOU, Juan CHEN, Chen CUI, Qian WANG, Dezun DONG, Yuhua TANG. Detailed and clock-driven simulation for HPC interconnection network. Front. Comput. Sci., 2016, 10(5): 797‒811 https://doi.org/10.1007/s11704-016-5035-3

References

[1]
Dongarra J J, Meuer H W, Strohmaier E. TOP500 supercomputer sites. Supercomputer, 1997, 13: 89–111
[2]
Pang Z B, Xie M, Zhang J, Zheng Y, Wang G B, Dong D Z, Suo G. The TH Express high performance interconnect networks. Frontiers of Computer Science, 2014, 8(3): 357–366
CrossRef Google scholar
[3]
Raponi P G, Petrini F, Walkup R, Checconi F. Characterization of the communication patterns of scientific applications on Blue Gene/P. In: Proceedings of 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW). 2011: 1017–1024
CrossRef Google scholar
[4]
Kogge P M. Architectural challenges at the exascale frontier (invited talk). Simulating the Future: Using One Million Cores and Beyond, 2008
[5]
Abts D, Marty M R, Wells P M, Klausler P, Liu H. Energy proportional datacenter networks. In: Proceedings of the 37th Annual International Symposium on Computer Architecture. 2010, 338–347
CrossRef Google scholar
[6]
Shalf J, Dosanjh S, Morrison J. Exascale Computing Technology Challenges. In: Palma JMLM, Daydé M, Marques O, Lopes J C, <Eds/>. High Performance Computing for Computational Science lCVECPAR 2010. Berkeley, CA: Springer Berlin Heidelberg, 2011, 1–25
CrossRef Google scholar
[7]
Alonso M, Coll S, Martinez J M, Santonja V, Duato J. Dynamic power saving in fat-tree interconnection networks using on/off links. In: Pro ceedings of the 20th International. IEEE Parallel and Distributed Processing Symposium. 2006
[8]
Raghunathan V, Srivastava M B, Gupta R K. A survey of techniques for energy ecient on-chip communication. In: Proceedings of the 40th Annual Design Automation Conference. 2003, 900–905
[9]
Deveci M, Rajamanickam S, Leung V J, Pedretti K, Olivier S L, Bunde D P, Çatalyürek U V, Devine K. Exploiting geometricpartitioning in task mapping for parallel computers. In: Proceedings of the 28th International IEEE Parallel and Distributed Processing Symposium. 2014, 27–36
[10]
Zhang P, Gao Y, Fierson J, Deng Y F. Eigenanalysis-based task mapping on parallel computers with cellular networks. Mathematics of Computation, 2014, 83(288): 1727–1756
CrossRef Google scholar
[11]
Jiang N, Balfour J, Becker D U, Towies B, Dally W J, Michelogiannakis G, Kim J. A detailed and flexible cycle-accurate Network-on- Chip simulator. In: Proceedings of 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). 2013, 86–96
CrossRef Google scholar
[12]
Agarwal N, Krishna T, Peh L S, Jha N K. GARNET: A detailed onchipnetwork model inside a full-system simulator. In: Proceedings of 2009 IEEE International Symposium on Performance Analysis of Systems and Software. 2009, 33–42
CrossRef Google scholar
[13]
Zhai J D, Chen W G, Zheng W M. PHANTOM: predicting performance of parallel applications on large-scale parallel machines using a single node. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles of Parellel Programming. 2010, 305–314
CrossRef Google scholar
[14]
Denzel W E, Li J, Walker P, Jin Y. A framework for end-to-end simulation of high-performance computing systems. Simulation, 2010, 86(5–6): 331–350
CrossRef Google scholar
[15]
Wilke J J, Kenny J P. Using discrete event simulation for programming model exploration at extreme-scale: macroscale components for the structural simulation toolkit (SST). Sandia Report SAND2015-1027, Sandia National Laboratories, 2015
[16]
Binkert N, Beckmann B, Black G, Reinhardt S T, Saidi A, Basu A, Hestness J, Hower D R, Krishna T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill M D, Wood D A. The gem5 simulator. ACMSIGARCH Computer Architecture News, 2011, 39(2): 1–7
CrossRef Google scholar
[17]
Peno B, Wagner A, Tuxen M, Rüngeler I. MPI-NeTSim: a network simulation module for MPI. In: Proceedings of the 15th IEEE International Conference on Parallel and Distributed Systems (ICPADS). 2009, 464–471
[18]
Zheng G, Kakulapati G, Kale L V. BigSim: a parallel simulator for performance prediction of extremely large parallel machines. In: Proceedings of the 18th International IEEE Parallel and Distributed Processing Symposium. 2004
[19]
Dally W J, Towles B P. Principles and Practices of Interconnection Networks. San Francisco, CA: Elsevier, 2004
[20]
Culler D, Karp R, Patterson D, Sahay A, Schauser K E, Santos E, Subramonian R, von Eicken T. LogP: towards a realistic model of parallel computation. In: Proceedings of the 4th ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming. 1993, 1–12
CrossRef Google scholar
[21]
Alexandrov A, Ionescu M F, Schauser K E, Scheiman C. LogGP: incorporating long messages into the LogP modela—one step closer towards a realisticmodel for parallel computation. In: Proceedings of the 7th Annual ACM symposium on Parallel Algorithms and Architectures. 1995, 95–105
CrossRef Google scholar
[22]
Moritz C A, Frank M I. LoGPC: Modeling network contention in message-passing programs. In: Proceedings of the 1998 ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems. 1998, 254–263
CrossRef Google scholar
[23]
Chen W G, Zhai J D, Zhang J, Zheng W M. LogGPO: an accurate communication model for performance prediction of MPI programs. Science in China Series F: Information Sciences, 2009, 52(10): 1785–1791
CrossRef Google scholar
[24]
Liao X K, Xiao L Q, Yang C Q, Lu Y T. MilkyWay-2 supercomputer: system and application. Frontiers of Computer Science, 2014, 8(3): 345–356
CrossRef Google scholar
[25]
Kelton W D, Law A M. Simulation Modeling and Analysis. Boston: McGraw Hill, 2000
[26]
Varga A. The OMNeT++ discrete event simulation system. In: Proceedings of the European Simulation Multiconference. 2001
[27]
Gropp W. MPICH2: a new start for MPI implementations. In: Kranzlmüller D, Volkert J, Kacsuk P, Dongarra J<Eds/>. Recent Advances in Parallel Virtual Machine and Message Passing Interface. Springer Berlin Heidelberg, 2002: 7
CrossRef Google scholar
[28]
Gabriel E, Fagg G E, Bosilca G, Angskun T, Dongrra J J, Squyres J M, Sahay V, Kambadur P, Barrett B, Lumsdaine A, Castain R H, Daniel D J, Graham R L, Woodall T S. Open MPI: goals, concept, and design of a next generation MPI implementation. In: Kranzlmüller D, Kacsuk P, Dongarra J, <Eds/>. Recent Advances in Parallel Virtual Machine and Message Passing Interface. Springer Berlin Heidelberg, 2004: 97–104
CrossRef Google scholar
[29]
Kim M S, Son D M, Ko Y B, Kim Y H. A simulation study of the PLC-MAC performance using network simulator-2. In: Proceedings of 2008 IEEE International Symposium on Power Line Communications and Its Applications. 2008, 99–104
[30]
Vetter J S, Mueller F. Communication characteristics of large-scale scientific applications for contemporary cluster architectures. Journal of Parallel and Distributed Computing, 2003, 63(9): 853–865
CrossRef Google scholar
[31]
Becker D, Wolf F, Frings W, Geimer M, Wylie B J N, Mohr B. Automatic trace-based performance analysis of metacomputing applications. In: Proceedings of 2007 IEEE International Parallel and Distributed Processing Symposium. 2007, 1–10
CrossRef Google scholar
[32]
Nagel W E, Arnold A, Weber M, Hoppe H S, Solchenbach K. VAMPIR: visualization and analysis of MPI resources. MD5 SHA512, 1996
[33]
Mohr B, Wolf F. KOJAK—a tool set for automatic performance analysis of parallel programs. In: Kosch H, Böszörményi L, Hellwagner H, <Eds/>. Euro-Par 2003 Parallel Processing. Springer Berlin Heidelberg, 2003: 1301–1304
CrossRef Google scholar
[34]
Shende S S, Malony A D. The Tau parallel performance system. International Journal of High Performance Computing Applications, 2006, 20(2): 287–311
CrossRef Google scholar
[35]
O’Carroll F, Tezuka H, Hori A, Ishikawa Y. The design and implementation of zero copy MPI using commodity hardware with a high performance network. In: Proceedings of the 12th ACM International Conference on Supercomputing. 1998, 243–250
CrossRef Google scholar
[36]
Padovano M. System and method for accessing a storage area network as network attached storage. US Patent, 6606690, <Date>2003-08-12</Date>
[37]
Hamada T, Nakasato N. InfiniBand Trade Association, InfiniBand architecture specification: release 1.0. In: Proceedings of 2005 International Conference on Field Programmable Logic and Applications. 2005
[38]
Xie M, Lu Y, Wang K F, Liu L, Cao H J, Yang X J. Tianhe-1A interconnect and message-passing services. IEEE Micro, 2011 (1): 8–20
[39]
Wu J, Liao X K, Dong D Z, Wang L, Li C L. HVCRouter: energy ecient networkon-chip router with heterogeneous virtual channels. In: Wang G J, Zomaya A, Perez G M, Li K L, <Eds/>. Algorithms and Architectures for Parallel Processing. Springer International Publishing, 2015: 199–213
CrossRef Google scholar
[40]
Ma S, Jerger N E, Wang Z Y. DBAR: an effcient routing algorithm to support multiple concurrent applications in networks-on-chip. In: Proceedings of the 38th Annual International Symposium on Computer Architecture (ISCA). 2011, 413–424
CrossRef Google scholar
[41]
Chen J, Zhou W, Ben C. Supremum of idle routers on 2D-mesh with dimension-order routing. Journal of Computational Information Systems, 2014, 10(22): 9897–9906
[42]
Lusk E, Huss S, Saphir B, Snir M. MPI: a message-passing interface standard. 2009
[43]
Li J, Huang W, Lefurgy C, Zhang L X, Denzel W E, Treumann R R, Wang K. Power shifting in thrifty interconnection network. In: Proceedings of the 17th IEEE International Symposium on High Performance Computer Architecture (HPCA). 2011, 156–167
CrossRef Google scholar
[44]
Liao X K. MilkyWay-2: back to the world Top 1. Frontiers of Computer Science, 2014, 8(3): 343–344
CrossRef Google scholar
[45]
Bailey D H, Barszcz E, Barton J T, Browning D S, Carter R L, Dagum L, Fatoohi R A, Frederickson P O, Lasinski T A, Schreiber R S, Simon H D, Venkatakrishnan V, Weeratunga S K. The NAS parallel benchmarks. International Journal of High Performance Computing Applications, 1991, 5(3): 63–73
CrossRef Google scholar
[46]
Initiative A S C. The ASCI sweep3d benchmark code. 1995
[47]
Velho P, Legrand A. Accuracy study and improvement of network simulation in the SimGrid framework. In: Proceedings of the 2nd International Conference on Simulation Tools and Techniques. 2009, 13
CrossRef Google scholar
[48]
Tabe T B, Stout Q F. The use of the MPI communication library in the NAS parallel benchmarks. Ann Arbor, 1999(1001): 48109
[49]
Matsutani H, Koibuchi M, Wang D, Amano H. Run-time power gating of on-chip routers using look-ahead routing. In: Proceedings of the 2008 Asia and South Pacific Design Automation Conference. 2008, 55–60
CrossRef Google scholar
[50]
Mihic K, Simunic T, DeMicheli G. Reliability and power management of integrated systems. In: Proceedings of 2004 IEEE Euromicro Symposium on Digital System Design. 2004, 5–11
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1186 KB)

Accesses

Citations

Detail

Sections
Recommended

/