Tolerance-based multigranulation rough sets in incomplete systems

Zaiyue ZHANG , Xibei YANG

Front. Comput. Sci. ›› 2014, Vol. 8 ›› Issue (5) : 753 -762.

PDF (294KB)
Front. Comput. Sci. ›› 2014, Vol. 8 ›› Issue (5) : 753 -762. DOI: 10.1007/s11704-014-3141-7
RESEARCH ARTICLE

Tolerance-based multigranulation rough sets in incomplete systems

Author information +
History +
PDF (294KB)

Abstract

Presently, the notion ofmultigranulation has been brought to our attention. In this paper, the multigranulation technique is introduced into incomplete information systems. Both tolerance relations and maximal consistent blocks are used to construct multigranulation rough sets. Not only are the basic properties about these models studied, but also the relationships between different multigranulation rough sets are explored. It is shown that by using maximal consistent blocks, the greater lower approximation and the same upper approximation as from tolerance relations can be obtained. Such a result is consistent with that of a single-granulation framework.

Keywords

incomplete information system / maximal consistent block / multigranulation rough sets / tolerance relation

Cite this article

Download citation ▾
Zaiyue ZHANG, Xibei YANG. Tolerance-based multigranulation rough sets in incomplete systems. Front. Comput. Sci., 2014, 8(5): 753-762 DOI:10.1007/s11704-014-3141-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pawlak Z. Rough Sets-Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, 1992

[2]

Gore A. Earth in the Balance. New York: Plume Books, 1992

[3]

Ebenbach D H, Moore C F. Incomplete information, inferences, and individual differences: the case of environmental judgments. Organizational Behavior and Human Decision Processes, 2000, 81: 1-27

[4]

Yang X B, Yang J Y. Incomplete information system and rough set theory: models and attribute reductions. Science Press & Springer, 2012

[5]

Yang X B, Zhang M. Dominance-based fuzzy rough approach to an interval-valued decision system. Frontiers of Computer Science in China, 2011, 5: 195-204

[6]

Alonso S, Chiclana F, Herrera F, Herrera-Viedma, Alcalá-Fdez, Porcel C. A consistency based procedure to estimate missing pairwise preference values. International Journal of Intelligent Systems, 2008, 23: 155-175

[7]

Herrera-Viedma E, Chiclana F, Herrera F, . Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Transactions on Systems, Man, and Cybernetics Part B, 2007, 37: 176-189

[8]

Kryszkiewicz M. Rough set approach to incomplete information systems. Information Sciences, 1998, 112: 39-49

[9]

Leung Y, Li D Y. Maximal consistent block technique for rule acquisition in incomplete information systems. Information Sciences, 2003, 115: 85-106

[10]

Leung Y, Wu W Z, Zhang W X. Knowledge acquisition in incomplete information systems: A rough set approach. European Journal of Operational Research, 2006, 168: 164-180

[11]

Shao M W, Zhang W X. Dominance relation and rules in an incomplete ordered information system. International Journal of Intelligent Systems, 2005, 20: 13-27

[12]

Yang X B, Yang J Y, Wu C, Yu D J. Dominance-based rough set approach and knowledge reductions in incomplete ordered information system. Information Sciences, 2008, 178: 1219-1234

[13]

Stefanowski J, Tsoukias A. Incomplete information tables and rough classification. Computational Intelligence, 2001, 17: 545-566

[14]

Qian Y H, Liang J Y. Rough set method based on multi-granulations. 5th IEEE International Conference on Cognitive Informatics, 2006: 297-304

[15]

Qian Y H, Liang J Y, Dang C Y. Incomplete multigranulation rough set. IEEE Transactions on Systems, Man, and Cybernetics Part B, 2010, 20: 420-431

[16]

Qian Y H, Liang J Y, Pedrycz W, Dang C Y. Positive approximation: an accelerator for attribute reduction in rough set theory. Artificial Intelligence, 2010, 174: 597-618

[17]

Qian Y H, Liang J Y, Wei W. Pessimistic rough decision. Second International Workshop on Rough Sets Theory, 2010: 440-449

[18]

Qian Y H, Liang J Y, Yao Y Y, Dang C Y. MGRS: a multi-granulation rough set. Information Sciences, 2010, 180: 949-970

[19]

Liang J Y, Wang F, Dang C Y, Qian Y H. An efficient rough feature selection algorithm with a multi-granulation view. International Journal of Approximate Reasoning, 2012, 53: 912-926

[20]

Yang X B, Zhang Y Q, Yang J Y. Local and global measurements of MGRS rules. International Journal of Computational Intelligence Systems, 2012, 5: 1010-1024

[21]

Yang X B, Song X N, Chen Z H, Yang J Y. On multigranulation rough sets in incomplete information system. International Journal of Machine Learning and Cybernetics, 2012, 3: 223-232

[22]

Yang X B, Qi Y S, Song X N, Yang J Y. Test cost sensitive multigranulation rough set: model and minimal cost selection. Information Sciences, 2013, 250: 184-199

[23]

Yang X B, Song X N, She X H, Yang J Y. Hierarchy on multigranulation structures: a knowledge distance approach. International Journal of General Systems, 2013, 42: 754-773

[24]

Xu W H, Sun W X, Zhang X Y, Zhang W X. Multiple granulation rough set approach to ordered information systems. International Journal of General Systems, 2012, 41: 475-501

[25]

Xu W H, Wang Q R, Zhang X T. Multi-granulation rough sets based on tolerance relations. Soft Computing, 2013, 17: 1241-1252

[26]

XuW H, Wang Q R, Zhang X T. Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space. International Journal of Fuzzy Systems, 2011, 13: 246-259

[27]

Lin G P, Qian Y H, Li J J. NMGRS: Neighborhood-based multigranulation rough sets. International Journal of Approximate Reasoning, 2012, 53: 1080-1093

[28]

Lin G P, Liang J Y, Qian Y H. Multigranulation rough sets: From partition to covering. Information Sciences, 2013, 241: 101-118

[29]

Guan Y Y, Wang H K. Set-valued information systems. Informa<?Pub Caret?>tion Sciences, 2006, 176: 2507-2525

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (294KB)

1302

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/