Fast motion and disparity estimation for multiview video coding

Zhipin DENG1,Kebin JIA1,Yui-Lam CHAN2,Chang-Hong FU2,Wan-Chi SIU2,

PDF(669 KB)
PDF(669 KB)
Front. Comput. Sci. ›› 2010, Vol. 4 ›› Issue (4) : 571-579. DOI: 10.1007/s11704-010-0061-z
Research articles

Fast motion and disparity estimation for multiview video coding

  • Zhipin DENG1,Kebin JIA1,Yui-Lam CHAN2,Chang-Hong FU2,Wan-Chi SIU2,
Author information +
History +

Abstract

Multiview video involves a huge amount of data, and as such, efficiently encoding each view is a critical issue for its wider application. In this paper, a fast motion and disparity estimation algorithm is proposed, utilizing the close correlation between temporal and inter-view reference frames. First, a reliable predictor is found according to the correlation of motion and disparity vectors. Second, an iterative search process is carried out to find the optimal motion and disparity vectors. The proposed algorithm makes use of the prediction vector obtained in the previous motion estimation for the next disparity estimation and achieves both optimal motion and disparity vectors jointly. Experimental results demonstrate that the proposed algorithm can successfully save an average of 86% of computational time with a negligible quality drop when compared to the joint multiview video model (JMVM) full search algorithm. Furthermore, in comparison with the conventional simulcast coding, the proposed algorithm enhances the video quality and also greatly increases coding speed.

Keywords

H.264 / multiview video coding (MVC) / disparity estimation / motion estimation / joint multiview video model (JMVM)

Cite this article

Download citation ▾
Zhipin DENG, Kebin JIA, Yui-Lam CHAN, Chang-Hong FU, Wan-Chi SIU,. Fast motion and disparity estimation for multiview video coding. Front. Comput. Sci., 2010, 4(4): 571‒579 https://doi.org/10.1007/s11704-010-0061-z
AI Summary AI Mindmap
PDF(669 KB)

Accesses

Citations

Detail

Sections
Recommended

/