Research fronts of agriculture in 2023

Jianxiang XU, Yunzhou LI, Jie ZHAO, Liang SHI, Yinkun YAO, Jingyue TANG

PDF(4065 KB)
PDF(4065 KB)
Front. Agr. Sci. Eng. ›› 2024, Vol. 11 ›› Issue (2) : 347-354. DOI: 10.15302/J-FASE-2024568
INFORMATION

Research fronts of agriculture in 2023

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Jianxiang XU, Yunzhou LI, Jie ZHAO, Liang SHI, Yinkun YAO, Jingyue TANG. Research fronts of agriculture in 2023. Front. Agr. Sci. Eng., 2024, 11(2): 347‒354 https://doi.org/10.15302/J-FASE-2024568

References

[1]
Institute of Science and Development, Chinese Academy of Sciences (CASISD). 2023 Research Fronts. Available at CASISD website on February 2, 2024
[2]
Engineering. 2023 Engineering Fronts. Available at Engineering Website on February 2, 2024
[3]
Frontiers of Agricultural Science and Engineering (FASE). 2023 Engineering Fronts. FASE website, 2023. https://journal.hep.com.cn/fase/EN/column/item962.shtml
[4]
“Research Fronts 2023: Active Fields, Leading Countries/ Regions”. Available at CASISD website on February 2, 2024
[5]
2022 Research Fronts. Available at Jinling Institute of Technology (JIT) Library website on April 1, 2024
[6]
2021 Research Fronts. Available at JIT Library website on April 1, 2024
[7]
2020 Research Fronts. Available at JIT Library website on April 1, 2024
[8]
2019 Research Fronts. Available at JIT Library website on April 1, 2024
[9]
Tettelin H, Masignani V, Cieslewicz M J, Donati C, Medini D, Ward N L, Angiuoli S V, Crabtree J, Jones A L, Durkin A S, Deboy R T, Davidsen T M, Mora M, Scarselli M, Margarit y Ros I, Peterson J D, Hauser C R, Sundaram J P, Nelson W C, Madupu R, Brinkac L M, Dodson R J, Rosovitz M J, Sullivan S A, Daugherty S C, Haft D H, Selengut J, Gwinn M L, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor K J B, Smith S, Utterback T R, White O, Rubens C E, Grandi G, Madoff L C, Kasper D L, Telford J L, Wessels M R, Rappuoli R, Fraser C M. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(39): 13950–13955
CrossRef Google scholar
[10]
Xu J X, Li Y Z, Yao Y K, Zhao J, Tang J Y, Feng Z X. Genome editing: a ground breaking research has been ranked top 10 engineering fronts from 2017 to 2021. Frontiers of Agricultural Science and Engineering, 2022, 9(2): 309–311
[11]
Bayer P E, Golicz A A, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new reference. Nature Plants, 2020, 6(8): 914–920
CrossRef Google scholar
[12]
Li R, Li Y, Zheng H, Luo R, Zhu H, Li Q, Qian W, Ren Y, Tian G, Li J, Zhou G, Zhu X, Wu H, Qin J, Jin X, Li D, Cao H, Hu X, Blanche H, Cann H, Zhang X, Li S, Bolund L, Kristiansen K, Yang H, Wang J, Wang J. Building the sequence map of the human pan-genome. Nature Biotechnology, 2010, 28(1): 57–63
CrossRef Google scholar
[13]
Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman D M, Burzynski-Chang E A, Fish T L, Stromberg K A, Sacks G L, Thannhauser T W, Foolad M R, Diez M J, Blanca J, Canizares J, Xu Y, van der Knaap E, Huang S, Klee H J, Giovannoni J J, Fei Z. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 2019, 51(6): 1044–1051
CrossRef Google scholar
[14]
Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel T H, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo A L, Tieman D M, Klee H, Kirsche M, Aganezov S, Ranallo-Benavidez T R, Lemmon Z H, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie W R, Hutton S, Van Eck J, Gillis J, Eshed Y, Sedlazeck F J, van der Knaap E, Schatz M C, Lippman Z B. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 2020, 182(1): 145–161.e23
CrossRef Google scholar
[15]
Tao Y, Luo H, Xu J, Cruickshank A, Zhao X, Teng F, Hathorn A, Wu X, Liu Y, Shatte T, Jordan D, Jing H, Mace E. Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants, 2021, 7(6): 766–773
CrossRef Google scholar
[16]
Garrison E, Sirén J, Novak A M, Hickey G, Eizenga J M, Dawson E T, Jones W, Garg S, Markello C, Lin M F, Paten B, Durbin R. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nature Biotechnology, 2018, 36(9): 875–879
CrossRef Google scholar
[17]
Ameur A. Goodbye reference, hello genome graphs. Nature Biotechnology, 2019, 37(8): 866–868
CrossRef Google scholar
[18]
Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou G A, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z. Pan-genome of wild and cultivated soybeans. Cell, 2020, 182(1): 162–176.e13
CrossRef Google scholar
[19]
Li H, Wang S, Chai S, Yang Z, Zhang Q, Xin H, Xu Y, Lin S, Chen X, Yao Z, Yang Q, Fei Z, Huang S, Zhang Z. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications, 2022, 13(1): 682
CrossRef Google scholar

Compliance with ethics guidelines

Jianxiang Xu, Yunzhou Li, Jie zhao, Liang Shi, Yinkun Yao, and Jingyue Tang declare that they have no conflicts of interest or financial conflicts to disclose. This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2024. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(4065 KB)

Accesses

Citations

Detail

Sections
Recommended

/