SOIL ORGANIC CARBON SEQUESTRATION MATTERS BUT IS NO PANACEA FOR CARBON-NEUTRAL AGRICULTURE
Oene OENEMA
SOIL ORGANIC CARBON SEQUESTRATION MATTERS BUT IS NO PANACEA FOR CARBON-NEUTRAL AGRICULTURE
[1] |
FAO
|
[2] |
Minasny B, Malone B P, McBratney A B, Angers D A, Arrouays D, Chambers A, Chaplot V, Chen Z S, Cheng K, Das B S, Field D J, Gimona A, Hedley C B, Hong S Y, Mandal B, Marchant B P, Martin M, McConkey B G, Mulder V L, O’Rourke S, Richer-de-Forges A C, Odeh I, Padarian J, Paustian K, Pan G, Poggio L, Savin I, Stolbovoy V, Stockmann U, Sulaeman Y, Tsui C C, Vågen T G, van Wesemael B, Winowiecki L. Soil carbon 4 per mille. Geoderma, 2017, 292: 59–86
CrossRef
Google scholar
|
[3] |
Yang H S. Modeling organic matter mineralization and exploring options for organic matter management in arable farming in Northern China. Dissertation for the Doctoral Degree. The Netherlands: Wageningen University, 1996. ISBN 90–5485-90–5485
|
[4] |
Yang H S, Janssen B H. Analysis of impact of farming practices on dynamics of soil organic matter in northern China. European Journal of Agronomy, 1997, 7(1−3): 211−219
|
[5] |
Ding W, Luo J, Li J, Yu H, Fan J, Liu D. Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer-induced N2O emissions from an intensively cultivated soil. Science of the Total Environment, 2013, 465: 115–124
CrossRef
Pubmed
Google scholar
|
[6] |
Han D, Wiesmeier M, Conant R T, Kühnel A, Sun Z, Kögel-Knabner I, Hou R, Cong P, Liang R, Ouyang Z. Large soil organic carbon increase due to improved agronomic management in the North China Plain from 1980s to 2010s. Global Change Biology, 2018, 24(3): 987–1000
CrossRef
Pubmed
Google scholar
|
[7] |
Huang L, Zhu Y, Wang Q, Zhu A, Liu Z, Wang Y, Allen D T, Li L. Assessment of the effects of straw burning bans in China: emissions, air quality, and health impacts. Science of the Total Environment, 2021, 789: 147935
CrossRef
Pubmed
Google scholar
|
[8] |
Lessmann M, Ros G H, Young M D, de Vries W. Global variation in soil carbon sequestration potential through improved cropland management. Global Change Biology, 2022, 28(3): 1162–1177
CrossRef
Pubmed
Google scholar
|
[9] |
Chen S, Yang P, Zhang Y, Dong W, Hu C, Oenema O. Responses of cereal yields and soil carbon sequestration to four long-term tillage practices in the North China Plain. Agronomy, 2022, 12(1): 176
CrossRef
Google scholar
|
[10] |
Ogle S M, Alsaker C, Baldock J, Bernoux M, Breidt F J, McConkey B, Regina K, Vazquez-Amabile G G. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Scientific Reports, 2019, 9(1): 11665
CrossRef
Pubmed
Google scholar
|
[11] |
Bai Z, Ma W, Ma L, Velthof G L, Wei Z, Havlík P, Oenema O, Lee M R F, Zhang F. China’s livestock transition: driving forces, impacts, and consequences. Science Advances, 2018, 4(7): eaar8534
CrossRef
Pubmed
Google scholar
|
[12] |
Tan M, Hou Y, Zhang L, Shi S, Long W, Ma Y, Zhang T, Li F, Oenema O. Operational costs and neglect of end-users are the main barriers to improving manure treatment in intensive livestock farms. Journal of Cleaner Production, 2021, 289: 125149
CrossRef
Google scholar
|
[13] |
Janzen H H, van Groenigen K J, Powlson D S, Schwinghamer T, van Groenigen J W. Photosynthetic limits on carbon sequestration in croplands. Geoderma, 2022, 416: 115810
CrossRef
Google scholar
|
[14] |
Schlesinger W H, Amundson R. Managing for soil carbon sequestration: let’s get realistic. Global Change Biology, 2019, 25(2): 386–389
CrossRef
Pubmed
Google scholar
|
[15] |
Zhang H, Xu Y, Lahr M L. The greenhouse gas footprints of China’s food production and consumption (1987–2017). Journal of Environmental Management, 2022, 301: 113934
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |