INTERCROPPING SUSTAINABLY INCREASES YIELDS AND SOIL FERTILITY

Xiaofei LI, Ruipeng YU, Long LI

PDF(7339 KB)
PDF(7339 KB)
Front. Agr. Sci. Eng. ›› 2021, Vol. 8 ›› Issue (4) : 659-661. DOI: 10.15302/J-FASE-2021418
NEWS
NEWS

INTERCROPPING SUSTAINABLY INCREASES YIELDS AND SOIL FERTILITY

Author information +
History +

Cite this article

Download citation ▾
Xiaofei LI, Ruipeng YU, Long LI. INTERCROPPING SUSTAINABLY INCREASES YIELDS AND SOIL FERTILITY. Front. Agr. Sci. Eng., 2021, 8(4): 659‒661 https://doi.org/10.15302/J-FASE-2021418

References

[1]
BrookerR W, BennettA E, CongW F, DaniellT J, GeorgeT S, HallettP D, HawesC, IannettaP P M, JonesH G, KarleyA J, LiL, McKenzie B M, PakemanR J, PatersonE, SchöbC, ShenJ, SquireG, WatsonC A, ZhangC, ZhangF, ZhangJ, WhiteP J. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206( 1): 107– 117
CrossRef Google scholar
[2]
Li L, Liu Y X, Li X F. Intercropping to maximize root-root interactions in agricultural plants. In: Rengel Z, Djalovic I, eds. The Root Systems in Sustainable Agricultural Intensificatio. Hoboken: Wiley Blackwell, 2021, 309–328
[3]
LiL, Li S M, SunJ H, ZhouL L, BaoX G, ZhangH G, ZhangF S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104( 27): 11192– 11196
CrossRef Google scholar
[4]
LiB, Li Y Y, WuH M, ZhangF F, LiC J, LiX X, LambersH, LiL. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113( 23): 6496– 6501
CrossRef Google scholar
[5]
LiC, Hoffland E, KuyperT W, YuY, Zhang C, LiH, ZhangF, van der WerfW. Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6( 6): 653– 660
CrossRef Google scholar
[6]
RenardD, TilmanD. National food production stabilized by crop diversity. Nature, 2019, 571( 7764): 257– 260
CrossRef Google scholar
[7]
Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, Wang Y, Li J P, Wang Y, Xia H Y, Mei P P, Wang X F, Zhao J H, Yu R P, Zhang W P, Che Z X, Gui L G, Callaway R M, Tilman D, Li L. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 2021 doi: 10.1038/s41893-021-00767-7
[8]
TilmanD, ReichP B, KnopsJ M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006, 441( 7093): 629– 632
CrossRef Google scholar
[9]
RoscherC, WeigeltA, ProulxR, MarquardE, SchumacherJ, WeisserW W, SchmidB. Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands. Journal of Ecology, 2011, 99( 6): 1460– 1469
CrossRef Google scholar
[10]
ZhouB R, LiS, Li F, DongS K, MaF L, ZhuS C, ZhouH K, StufkensP. Plant functional groups asynchrony keep the community biomass stability along with the climate change—a 20-year experimental observation of alpine meadow in eastern Qinghai-Tibet Plateau. Agriculture, Ecosystems & Environment, 2019, 282 : 49– 57
CrossRef Google scholar
[11]
SchnabelF, SchwarzJ A, Dănescu A, FichtnerA, NockC A, BauhusJ, PotvinC. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Global Change Biology, 2019, 25( 12): 4257– 4272
CrossRef Google scholar
[12]
TiemannL K, GrandyA S, AtkinsonE E, Marin-SpiottaE, McDanielM D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 2015, 18( 8): 761– 771
CrossRef Google scholar
[13]
LangeM, EisenhauerN, SierraC A, BesslerH, EngelsC, GriffithsR I, Mellado-VázquezP G, MalikA A, RoyJ, Scheu S, SteinbeissS, ThomsonB C, TrumboreS E, GleixnerG. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 2015, 6( 1): 6707
CrossRef Google scholar
[14]
DybzinskiR, FargioneJ E, ZakD R, FornaraD, TilmanD. Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia, 2008, 158( 1): 85– 93
CrossRef Google scholar
[15]
CongW F, van RuijvenJ, MommerL, De DeynG B, BerendseF, HofflandE. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of Ecology, 2014, 102( 5): 1163– 1170
CrossRef Google scholar
[16]
WanN F, ZhengX R, FuL W, KiærL P, ZhangZ, Chaplin-KramerR, DaineseM, TanJ, Qiu S Y, HuY Q, TianW D, NieM, Ju R T, DengJ Y, JiangJ X, CaiY M, LiB. Global synthesis of effects of plant species diversity on trophic groups and interactions. Nature Plants, 2020, 6( 5): 503– 510
CrossRef Google scholar
[17]
ZhuY, Chen H, FanJ, WangY, LiY, Chen J, FanJ, YangS, HuL, Leung H, MewT W, TengP S, WangZ, MundtC C. Genetic diversity and disease control in rice. Nature, 2000, 406( 6797): 718– 722
CrossRef Google scholar
[18]
IsbellF, AdlerP R, EisenhauerN, FornaraD, KimmelK, KremenC, LetourneauD K, LiebmanM, PolleyH W, QuijasS, Scherer-LorenzenM. Benefits of increasing plant diversity in sustainable agroecosystems. Journal of Ecology, 2017, 105( 4): 871– 879
CrossRef Google scholar

RIGHTS & PERMISSIONS

The Author(s) 2021. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(7339 KB)

Accesses

Citations

Detail

Sections
Recommended

/