
DESIGNING DIVERSIFIED CROPPING SYSTEMS IN CHINA: THEORY, APPROACHES AND IMPLEMENTATION
Wen-Feng CONG, Chaochun ZHANG, Chunjie LI, Guangzhou WANG, Fusuo ZHANG
Front. Agr. Sci. Eng. ›› 2021, Vol. 8 ›› Issue (3) : 362-372.
DESIGNING DIVERSIFIED CROPPING SYSTEMS IN CHINA: THEORY, APPROACHES AND IMPLEMENTATION
•Agricultural green transformation of China requires restructuring of cropping systems.
•Ecosystem services enhanced by crop diversification is key to sustainable agriculture.
•Crop diversification improve ecosystem services at field, farm and landscape scales.
•Cropping system design should meet regional characteristics and socio-economic demand.
Intensive agriculture in China over recent decades has successfully realized food security but at the expense of negative environmental impacts. Achieving green transformation of agriculture in China requires fundamental restructuring of cropping systems. This paper presents a theoretical framework of theory, approaches and implementation of crop diversification schemes in China. Initially, crop diversification schemes require identifying multiple objectives by simultaneously considering natural resources, limiting factors/constraints, and social and economic demands of different stakeholders. Then, it is necessary to optimize existing and/or design novel cropping systems based upon farming practices and ecological principles, and to strengthen targeted ecosystem services to achieve the identified objectives. Next, the resulting diversified cropping systems need to be evaluated and examined by employing experimental and modeling approaches. Finally, a strategic plan, as presented in this paper, is needed for implementing an optimized crop diversification in China based upon regional characteristics with the concurrent objectives of safe, nutritious food production and environmental protection. The North China Plain is used as an example to illustrate the strategic plan to optimize and design diversified cropping systems. The implementation of crop diversification in China will set an example for other countries undergoing agricultural transition, and contribute to global sustainable development.
Agriculture Green Development / crop diversification / cropping system modeling / ecosystem services / sustainable agriculture
[1] |
Matson P A, Parton W J, Power A G, Swift M J. Agricultural intensification and ecosystem properties. Science, 1997, 277(5325): 504–509
CrossRef
Pubmed
Google scholar
|
[2] |
Tilman D, Reich P B, Knops J, Wedin D, Mielke T, Lehman C. Diversity and productivity in a long-term grassland experiment. Science, 2001, 294(5543): 843–845
CrossRef
Pubmed
Google scholar
|
[3] |
Gaba S, Lescourret F, Boudsocq S, Enjalbert J, Hinsinger P, Journet E P, Navas M L, Wery J, Louarn G, Malezieux E, Pelzer E, Prudent M, Ozier-Lafontaine H. Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agronomy for Sustainable Development, 2015, 35(2): 607–623
CrossRef
Google scholar
|
[4] |
Renard D, Tilman D. National food production stabilized by crop diversity. Nature, 2019, 571(7764): 257–260
CrossRef
Pubmed
Google scholar
|
[5] |
Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008–1010
CrossRef
Pubmed
Google scholar
|
[6] |
Grebmer K V, Bernstein J, Nabarro D, Prasai N, Amin S, Yohannes Y, Sonntag A, Patterson F, Towey O, Thompson J. 2016 Global Hunger Index: getting to zero hunger. Washington: International Food Policy Research Institute, 2016
|
[7] |
Beillouin D, Ben-Ari T, Makowski D. Evidence map of crop diversification strategies at the global scale. Environmental Research Letters, 2019, 14(12): 123001
|
[8] |
Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, Sun Y, Peng X, Zhang J, He M, Zhu Y, Xue J, Wang G, Wu L, An N, Wu L, Ma L, Zhang W, Zhang F. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486–489
CrossRef
Pubmed
Google scholar
|
[9] |
Zhang F S, Shen J B, Zhang J L, Zuo Y M, Li L, Chen X P. Chapter One-Rhizosphere Processes and Management for Improving Nutrient Use Efficiency and Crop Productivity: Implications for China. Advances in Agronomy, 2010, 107: 1–32
CrossRef
Google scholar
|
[10] |
Cui Z, Zhang H, Chen X, Zhang C, Ma W, Huang C, Zhang W, Mi G, Miao Y, Li X, Gao Q, Yang J, Wang Z, Ye Y, Guo S, Lu J, Huang J, Lv S, Sun Y, Liu Y, Peng X, Ren J, Li S, Deng X, Shi X, Zhang Q, Yang Z, Tang L, Wei C, Jia L, Zhang J, He M, Tong Y, Tang Q, Zhong X, Liu Z, Cao N, Kou C, Ying H, Yin Y, Jiao X, Zhang Q, Fan M, Jiang R, Zhang F, Dou Z. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555(7696): 363–366
CrossRef
Pubmed
Google scholar
|
[11] |
Ying H, Xue Y, Yan K, Wang Y, Yin Y, Liu Z, Zhang Q, Tian X, Li Z, Liu Y, Cui Z. Safeguarding food supply and groundwater safety for maize production in China. Environmental Science & Technology, 2020, 54(16): 9939–9948
CrossRef
Pubmed
Google scholar
|
[12] |
Martin-Guay M O, Paquette A, Dupras J, Rivest D. The new Green Revolution: sustainable intensification of agriculture by intercropping. Science of the Total Environment, 2018, 615: 767–772
CrossRef
Pubmed
Google scholar
|
[13] |
Li C, Hoffland E, Kuyper T W, Yu Y, Zhang C, Li H, Zhang F, van der Werf W. Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6(6): 653–660
CrossRef
Pubmed
Google scholar
|
[14] |
Xu Z, Li C J, Zhang C C, Yu Y, van der Werf W, Zhang F S. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: a meta-analysis. Field Crops Research, 2020, 246: 107661
CrossRef
Google scholar
|
[15] |
Tang X Y, Zhang C C, Yu Y, Shen J B, van der Werf W, Zhang F S. Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis. Plant and Soil, 2020 doi: 10.1007/s11104-020-04768-x
|
[16] |
Yang L, Xu L, Liu B, Zhang Q, Pan Y F, Li Q, Li H Q, Lu Y H. Non-crop habitats promote the abundance of predatory ladybeetles in maize fields in the agricultural landscape of northern China. Agriculture, Ecosystems & Environment, 2019, 277: 44–52
CrossRef
Google scholar
|
[17] |
Lee M B, Goodale E. Crop heterogeneity and non-crop vegetation can enhance avian diversity in a tropical agricultural landscape in southern China. Agriculture, Ecosystems & Environment, 2018, 265: 254–263
CrossRef
Google scholar
|
[18] |
Gurr G M, Lu Z, Zheng X, Xu H, Zhu P, Chen G, Yao X, Cheng J, Zhu Z, Catindig J L, Villareal S, Van Chien H, Cuong Q, Channoo C, Chengwattana N, Lan L P, Hai H, Chaiwong J, Nicol H I, Perovic D J, Wratten S D, Heong K L. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nature Plants, 2016, 2(3): 16014
CrossRef
Pubmed
Google scholar
|
[19] |
Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, Tourdonnet S, Valantin-Morison M. Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 2009, 29(1): 43–62
CrossRef
Google scholar
|
[20] |
Zhao J, Yang Y D, Zhang K, Jeong J, Zeng Z H, Zang H D. Does crop rotation yield more in China? A meta-analysis. Field Crops Research, 2020, 245: 107659
CrossRef
Google scholar
|
[21] |
McDaniel M D, Tiemann L K, Grandy A S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 2014, 24(3): 560–570
CrossRef
Pubmed
Google scholar
|
[22] |
Bellon M R, Kotu B H, Azzarri C, Caracciolo F. To diversify or not to diversify, that is the question. Pursuing agricultural development for smallholder farmers in marginal areas of Ghana. World Development, 2020, 125: 104682
CrossRef
Pubmed
Google scholar
|
[23] |
Quemada M, Baranski M, Nobel-De Lange M N J, Vallejo A, Cooper J M. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agriculture, Ecosystems & Environment, 2013, 174: 1–10
CrossRef
Google scholar
|
[24] |
Mao L L, Zhang L Z, Li W Q, van der Werf W, Sun J H, Spiertz H, Li L. Yield advantage and water saving in maize/pea intercrop. Field Crops Research, 2012, 138: 11–20
CrossRef
Google scholar
|
[25] |
Ren J H, Zhang L Z, Duan Y, Zhang J, Evers J B, Zhang Y, Su Z C, van der Werf W. Intercropping potato (Solanum tuberosum L.) with hairy vetch (Vicia villosa) increases water use efficiency in dry conditions. Field Crops Research, 2019, 240: 168–176
CrossRef
Google scholar
|
[26] |
Bai W, Sun Z X, Zheng J M, Du G J, Feng L S, Cai Q, Yang N, Feng C, Zhang Z, Evers J B, van der Werf W, Zhang L Z. Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agricultural Water Management, 2016, 178: 281–290
CrossRef
Google scholar
|
[27] |
Raseduzzaman M, Jensen E S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. European Journal of Agronomy, 2017, 91: 25–33
CrossRef
Google scholar
|
[28] |
Knapp S, van der Heijden M G A. A global meta-analysis of yield stability in organic and conservation agriculture. Nature Communications, 2018, 9(1): 3632
CrossRef
Pubmed
Google scholar
|
[29] |
Groot J C J, Oomen G J M, Rossing W A H. Multi-objective optimization and design of farming systems. Agricultural Systems, 2012, 110: 63–77
CrossRef
Google scholar
|
[30] |
Bonaudo T, Bendahan A B, Sabatier R, Ryschawy J, Bellon S, Leger F, Magda D, Tichit M. Agroecological principles for the redesign of integrated crop-livestock systems. European Journal of Agronomy, 2014, 57: 43–51
CrossRef
Google scholar
|
[31] |
Huang C, Liu Q, Heerink N, Stomph T, Li B, Liu R, Zhang H, Wang C, Li X, Zhang C, van der Werf W, Zhang F. Economic performance and sustainability of a novel intercropping system on the North China Plain. PLoS One, 2015, 10(8): e0135518
CrossRef
Pubmed
Google scholar
|
[32] |
Rosa-Schleich J, Loos J, Mußhoff O, Tscharntke T. Ecological-economic trade-offs of Diversified Farming Systems—A review. Ecological Economics, 2019, 160: 251–263
CrossRef
Google scholar
|
[33] |
Wang G Z, Li H G, Christie P, Zhang F S, Zhang J L, Bever J D. Plant–soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant and Soil, 2017, 415(1–2): 1–12
CrossRef
Google scholar
|
[34] |
Boudreau M A. Diseases in intercropping systems. Annual Review of Phytopathology, 2013, 51: 499–519
|
[35] |
Liebman M, Dyck E. Crop rotation and intercropping strategies for weed management. Ecological Applications, 1993, 3(1): 92–122
|
[36] |
Tooker J F, Frank S D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. Journal of Applied Ecology, 2012, 49(5): 974–985
CrossRef
Google scholar
|
[37] |
Trenbath B R. Intercropping for the management of pests and diseases. Field Crops Research, 1993, 34(3–4): 381–405
CrossRef
Google scholar
|
[38] |
Zhang C C, Dong Y, Tang L, Zheng Y, Makowski D, Yu Y, Zhang F S, van der Werf W. Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input: a meta-analysis. European Journal of Plant Pathology, 2019, 154(4): 931–942
CrossRef
Google scholar
|
[39] |
Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew T W, Teng P S, Wang Z, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406(6797): 718–722
CrossRef
Pubmed
Google scholar
|
[40] |
Lechenet M, Makowski D, Py G, Munier-Jolain N. Profiling farming management strategies with contrasting pesticide use in France. Agricultural Systems, 2016, 149: 40–53
CrossRef
Google scholar
|
[41] |
Dogliotti S, van Ittersum M K, Rossing W A H. Influence of farm resource endowment on possibilities for sustainable development: a case study for vegetable farms in South Uruguay. Journal of Environmental Management, 2006, 78(3): 305–315
CrossRef
Pubmed
Google scholar
|
[42] |
Bell L W, Moore A D, Kirkegaard J A. Evolution in crop-livestock integration systems that improve farm productivity and environmental performance in Australia. European Journal of Agronomy, 2014, 57: 10–20
CrossRef
Google scholar
|
[43] |
Estrada-Carmona N, Raneri J E, Alvarez S, Timler C, Chatterjee S A, Ditzler L, Kennedy G, Remans R, Brouwer I, van den Berg K B, Talsma E F, Groot J C J. A model-based exploration of farm-household livelihood and nutrition indicators to guide nutrition-sensitive agriculture interventions. Food Security, 2020, 12(1): 59–81
CrossRef
Google scholar
|
[44] |
Organisation for Economic Co-operation and Development (OECD). Environmental Indicators for Agriculture, Methods and Results. OECD, 2001
|
[45] |
Landis D A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology, 2017, 18: 1–12
CrossRef
Google scholar
|
[46] |
Foley J A, Defries R, Asner G P, Barford C, Bonan G, Carpenter S R, Chapin F S, Coe M T, Daily G C, Gibbs H K, Helkowski J H, Holloway T, Howard E A, Kucharik C J, Monfreda C, Patz J A, Prentice I C, Ramankutty N, Snyder P K. Global consequences of land use. Science, 2005, 309(5734): 570–574
CrossRef
Pubmed
Google scholar
|
[47] |
Phalan B, Onial M, Balmford A, Green R E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science, 2011, 333(6047): 1289–1291
CrossRef
Pubmed
Google scholar
|
[48] |
Holland J M, Douma J C, Crowley L, James L, Kor L, Stevenson D R W, Smith B M. Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agronomy for Sustainable Development, 2017, 37(4): 31
CrossRef
Google scholar
|
[49] |
Dainese M, Martin E A, Aizen M A, Albrecht M, Bartomeus I, Bommarco R, Carvalheiro L G, Chaplin-Kramer R, Gagic V, Garibaldi L A, Ghazoul J, Grab H, Jonsson M, Karp D S, Kennedy C M, Kleijn D, Kremen C, Landis D A, Letourneau D K, Marini L, Poveda K, Rader R, Smith H G, Tscharntke T, Andersson G K S, Badenhausser I, Baensch S, Bezerra A D M, Bianchi F J J A, Boreux V, Bretagnolle V, Caballero-Lopez B, Cavigliasso P, Ćetković A, Chacoff N P, Classen A, Cusser S, da Silva E Silva F D, de Groot G A, Dudenhöffer J H, Ekroos J, Fijen T, Franck P, Freitas B M, Garratt M P D, Gratton C, Hipólito J, Holzschuh A, Hunt L, Iverson A L, Jha S, Keasar T, Kim T N, Kishinevsky M, Klatt B K, Klein A M, Krewenka K M, Krishnan S, Larsen A E, Lavigne C, Liere H, Maas B, Mallinger R E, Martinez Pachon E, Martínez-Salinas A, Meehan T D, Mitchell M G E, Molina G A R, Nesper M, Nilsson L, O’Rourke M E, Peters M K, Plećaš M, Potts S G, Ramos D L, Rosenheim J A, Rundlöf M, Rusch A, Sáez A, Scheper J, Schleuning M, Schmack J M, Sciligo A R, Seymour C, Stanley D A, Stewart R, Stout J C, Sutter L, Takada M B, Taki H, Tamburini G, Tschumi M, Viana B F, Westphal C, Willcox B K, Wratten S D, Yoshioka A, Zaragoza-Trello C, Zhang W, Zou Y, Steffan-Dewenter I. A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5(10): eaax0121
CrossRef
Pubmed
Google scholar
|
[50] |
Tschumi M, Albrecht M, Entling M H, Jacot K. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proceedings: Biological Sciences, 2015, 282(1814): 20151369
|
[51] |
Holden J, Grayson R P, Berdeni D, Bird S, Chapman P J, Edmondson J L, Firbank L G, Helgason T, Hodson M E, Hunt S F P, Jones D T, Lappage M G, Marshall-Harries E, Nelson M, Prendergast-Miller M, Shaw H, Wade R N, Leake J R. The role of hedgerows in soil functioning within agricultural landscapes. Agriculture, Ecosystems & Environment, 2019, 273: 1–12
CrossRef
Google scholar
|
[52] |
Torralba M, Fagerholm N, Burgess P J, Moreno G, Plieninger T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems & Environment, 2016, 230: 150–161
CrossRef
Google scholar
|
[53] |
Cong W F, Hoffland E, Li L, Six J, Sun J H, Bao X G, Zhang F S, Van Der Werf W. Intercropping enhances soil carbon and nitrogen. Global Change Biology, 2015, 21(4): 1715–1726
CrossRef
Pubmed
Google scholar
|
[54] |
Pereira A L C, Taques T C, Valim J O S, Madureira A P, Campos W G. The management of bee communities by intercropping with flowering basil (Ocimum basilicum) enhances pollination and yield of bell pepper (Capsicum annuum). Journal of Insect Conservation, 2015, 19(3): 479–486
CrossRef
Google scholar
|
[55] |
Brooker R W, Bennett A E, Cong W F, Daniell T J, George T S, Hallett P D, Hawes C, Iannetta P P M, Jones H G, Karley A J, Li L, McKenzie B M, Pakeman R J, Paterson E, Schöb C, Shen J, Squire G, Watson C A, Zhang C, Zhang F, Zhang J, White P J. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206(1): 107–117
CrossRef
Google scholar
|
[56] |
Li C J, Kuyper T W, van der Werf W, Zhang J L, Li H G, Zhang F S, Hoffland E. Testing for complementarity in phosphorus resource use by mixtures of crop species. Plant and Soil, 2019, 439(1–2): 163–177
CrossRef
Google scholar
|
[57] |
Bedoussac L, Justes E. Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. Plant and Soil, 2010, 330(1–2): 37–54
CrossRef
Google scholar
|
[58] |
Li L, Sun J, Zhang F, Guo T, Bao X, Smith F A, Smith S E. Root distribution and interactions between intercropped species. Oecologia, 2006, 147(2): 280–290
CrossRef
Pubmed
Google scholar
|
[59] |
Morris R A, Garrity D P. Resource capture and utilization in intercropping: non-nitrogen nutrients. Field Crops Research, 1993, 34(3–4): 319–334
CrossRef
Google scholar
|
[60] |
Li L, Tilman D, Lambers H, Zhang F S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014, 203(1): 63–69
CrossRef
Pubmed
Google scholar
|
[61] |
Li B, Li Y Y, Wu H M, Zhang F F, Li C J, Li X X, Lambers H, Li L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496–6501
CrossRef
Pubmed
Google scholar
|
[62] |
Wang G, Schultz P, Tipton A, Zhang J, Zhang F, Bever J D. Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species. Ecology Letters, 2019, 22(8): 1221–1232
CrossRef
Pubmed
Google scholar
|
[63] |
Wang G Z, Bei S K, Li J P, Bao X G, Zhang J D, Schultz P A, Li H G, Li L, Zhang F S, Bever J D, Zhang J L. Soil microbial legacy drives crop diversity advantage: linking ecological plant–soil feedback with agricultural intercropping. Journal of Applied Ecology, 2021, 58(3): 496–506
CrossRef
Google scholar
|
[64] |
Dias T, Dukes A, Antunes P M. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. Journal of the Science of Food and Agriculture, 2015, 95(3): 447–454
CrossRef
Pubmed
Google scholar
|
[65] |
Zhou X G, Liu J, Wu F Z. Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant and Soil, 2017, 415(1–2): 507–520
CrossRef
Google scholar
|
[66] |
van Ittersum M K, Rabbinge R, van Latesteijn H C. Exploratory land use studies and their role in strategic policy making. Agricultural Systems, 1998, 58(3): 309–330
CrossRef
Google scholar
|
[67] |
van der Burgt G J H M, Oomen G J M, Habets A S J, Rossing W A H. The NDICEA model, a tool to improve nitrogen use efficiency in cropping systems. Nutrient Cycling in Agroecosystems, 2006, 74(3): 275–294
CrossRef
Google scholar
|
[68] |
Dogliotti S, Rossing W A H, van Ittersum M K. ROTAT, a tool for systematically generating crop rotations. European Journal of Agronomy, 2003, 19(2): 239–250
CrossRef
Google scholar
|
[69] |
Groot J C J, Rossing W A H, Jellema A, Stobbelaar D J, Renting H, Van Ittersum M K. Exploring multi-scale trade-offs between nature conservation, agricultural profits and landscape quality—A methodology to support discussions on land-use perspectives. Agriculture, Ecosystems & Environment, 2007, 120(1): 58–69
CrossRef
Google scholar
|
[70] |
Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and inter-specific interactions on nutrients. Field Crops Research, 2001, 71(2): 123–137
CrossRef
Google scholar
|
[71] |
Li L, Li S M, Sun J H, Zhou L L, Bao X G, Zhang H G, Zhang F S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192–11196
CrossRef
Pubmed
Google scholar
|
[72] |
Xiao J X, Yin X H, Ren J B, Zhang M Y, Tang L, Zheng Y. Complementation drives higher growth rate and yield of wheat and saves nitrogen fertilizer in wheat and faba bean intercropping. Field Crops Research, 2018, 221: 119–129
CrossRef
Google scholar
|
[73] |
Yang F, Liao D P, Wu X L, Gao R C, Fan Y F, Raza M A, Wang X C, Yong T W, Liu W G, Liu J, Du J B, Shu K, Yang W Y. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017, 203: 16–23
CrossRef
Google scholar
|
[74] |
Gao H X, Meng W W, Zhang C C, van der Werf W, Zhang Z, Wan S B, Zhang F S. Yield and nitrogen uptake of sole and intercropped maize and peanut in response to N fertilizer input. Food and Energy Security, 2020, 9(1): e187
CrossRef
Google scholar
|
[75] |
Gao S J, Gao J S, Cao W D, Zou C Q, Huang J, Bai J S, Dou F G. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil. Journal of Integrative Agriculture, 2018, 17(8): 1852–1860
CrossRef
Google scholar
|
[76] |
Yu Q G, Hu X, Ma J W, Ye J, Sun W C, Wang Q, Lin H. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields. Soil & Tillage Research, 2020, 196: 104483
CrossRef
Google scholar
|
/
〈 |
|
〉 |