Intercropping enables a sustainable intensification of agriculture
Wopke VAN DER WERF, Chunjie LI, Wen-Feng CONG, Fusuo ZHANG
Intercropping enables a sustainable intensification of agriculture
[1] |
Stomph T J, Dordas C, Baranger A, de Rijk J, Dong B, Evers J, Gu C, Li L, Simon J, Jensen E S, Wang Q, Wang Y, Wang Z, Xu H, Zhang C, Zhang L, Zhang W P, Bedoussac L, van der Werf W. Designing intercrops for high yield, yield stability and efficient use of resources: are there principles? Advances in Agronomy, 2020, 160: 1–50
CrossRef
Google scholar
|
[2] |
Li L, Zhang L, Zhang F. Crop mixtures and the mechanisms of overyielding. Levin S A, ed. Encyclopedia of Biodiversity, (2nd ed.), 2013, 382–395
|
[3] |
Zhang L, van der Werf W, Zhang S P, Li B G, Spiertz J H J. Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Research, 2007, 103(3): 178–188
CrossRef
Google scholar
|
[4] |
Xu Z, Li C, Zhang C, Yu Y, van der Werf W, Zhang F. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: a meta-analysis. Field Crops Research, 2020, 246: 107661
CrossRef
Google scholar
|
[5] |
Li C, Hoffland E, Kuyper T W, Yu Y, Zhang C, Li H, Zhang F, van der Werf W. Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6(6): 653–660
CrossRef
Pubmed
Google scholar
|
[6] |
Li C, Hoffland E, Kuyper T W, Yu Y, Li H, Zhang C, Zhang F, van der Werf W. Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 2020, 113: 125987
CrossRef
Google scholar
|
[7] |
Yu Y, Stomph T J, Makowski D, van der Werf W. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis. Field Crops Research, 2015, 184: 133–144
CrossRef
Google scholar
|
[8] |
Martin-Guay M O, Paquette A, Dupras J, Rivest D. The new Green Revolution: sustainable intensification of agriculture by intercropping. Science of the Total Environment, 2018, 615: 767–772
CrossRef
Pubmed
Google scholar
|
[9] |
Mao L, Zhang L, Li W, van der Werf W, Sun J, Spiertz H, Li L. Yield advantage and water saving in maize/pea intercrop. Field Crops Research, 2012, 138: 11–20
CrossRef
Google scholar
|
[10] |
Tan M, Guo F, Tjeerd J S, Wang J, Yin W, Zhang L, Chai Q, van der Werf W. Dynamic process-based modelling of crop growth and competitive water extraction in relay strip intercropping: model development and application to wheat-maize intercropping. Field Crops Research, 2020, 246: 107613
CrossRef
Google scholar
|
[11] |
Bedoussac L, Journet E P, Hauggaard Nielsen H, Naudin C, Corre Hellou G, Prieur L, Jensen E S, Justes E. Eco-functional intensification by cereal-grain legume intercropping in organic farming systems for increased yields, reduced weeds and improved grain protein concentration. Organic Farming, Prototype for Sustainable Agricultures, 2014, 47–63
|
[12] |
Du J, Han T, Gai J, Yong T, Sun X, Wang X, Yang F, Liu J, Shu K, Liu W, Yang W. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture, 2018, 17(4): 747–754
CrossRef
Google scholar
|
[13] |
Tilman D. Benefits of intensive agricultural intercropping. Nature Plants, 2020, 6(6): 604–605
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |