The development and application of genome editing technology in ruminants: a review
Mengke YUAN, Yuanpeng GAO, Jing HAN, Teng WU, Jingcheng ZHANG, Yongke WEI, Yong ZHANG
The development and application of genome editing technology in ruminants: a review
Transgenic ruminants are a valuable resource for both animal breeding and biomedical research. The development of transgenic breeding is proceeding slowly, because it suffers from low efficiency of gene transfer and possible safety problems from uncontrolled random integration. However, new breeding methods combined with genome editing and somatic cell nuclear transfer or microinjection can offer an economic and efficient way to produce gene-edited ruminants, which can serve as bioreactors or have improved disease resistance, animal welfare and product quality. Recent advances in precise genome editing technologies, especially clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nucleases, are enabling the systematic development of gene-edited ruminant production. This review covers the development of gene-edited ruminants, the particulars of site-specific engineered nucleases and the state of the art and new insights into practical applications and social acceptance of genome editing technology in ruminants. It is concluded that the production of gene-edited ruminants is feasible and through improvements in genome editing technology it is possible to help feed the world.
bioreactors / breeding / engineered endonucleases / genome editing / ruminants
[1] |
Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, Cui C, Liu X, Zhang J, Zhang Y. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 2017, 18(1): 13
CrossRef
Pubmed
Google scholar
|
[2] |
Miao X. Recent advances in the development of new transgenic animal technology. Cellular and Molecular Life Sciences, 2013, 70(5): 815–828
CrossRef
Pubmed
Google scholar
|
[3] |
Carlson D F, Lancto C A, Zang B, Kim E S, Walton M, Oldeschulte D, Seabury C, Sonstegard T S, Fahrenkrug S C. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 2016, 34(5): 479–481
CrossRef
Pubmed
Google scholar
|
[4] |
Luo J, Song Z, Yu S, Cui D, Wang B, Ding F, Li S, Dai Y, Li N. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS One, 2014, 9(4): e95225
CrossRef
Pubmed
Google scholar
|
[5] |
Hammer R E, Pursel V G, Rexroad C E Jr, Wall R J, Bolt D J, Ebert K M, Palmiter R D, Brinster R L. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315(6021): 680–683
CrossRef
Pubmed
Google scholar
|
[6] |
Lillico S G, Proudfoot C, Carlson D F, Stverakova D, Neil C, Blain C, King T J, Ritchie W A, Tan W, Mileham A J, McLaren D G, Fahrenkrug S C, Whitelaw C B A. Live pigs produced from genome edited zygotes. Scientific Reports, 2013, 3(1): 2847
CrossRef
Pubmed
Google scholar
|
[7] |
Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): E1530–E1539
CrossRef
Pubmed
Google scholar
|
[8] |
Capecchi M R. How close are we to implementing gene targeting in animals other than the mouse? Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(3): 956–957
CrossRef
Pubmed
Google scholar
|
[9] |
Baguisi A, Behboodi E, Melican D T, Pollock J S, Destrempes M M, Cammuso C, Williams J L, Nims S D, Porter C A, Midura P, Palacios M J, Ayres S L, Denniston R S, Hayes M L, Ziomek C A, Meade H M, Godke R A, Gavin W G, Overström E W, Echelard Y. Production of goats by somatic cell nuclear transfer. Nature Biotechnology, 1999, 17(5): 456–461
CrossRef
Pubmed
Google scholar
|
[10] |
Cibelli J B, Stice S L, Golueke P J, Kane J J, Jerry J, Blackwell C, Ponce de León F A, Robl J M. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280(5367): 1256–1258
CrossRef
Pubmed
Google scholar
|
[11] |
Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H, Tsunoda Y. Eight calves cloned from somatic cells of a single adult. Science, 1998, 282(5396): 2095–2098
CrossRef
Pubmed
Google scholar
|
[12] |
Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H S. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810–813
CrossRef
Pubmed
Google scholar
|
[13] |
Schnieke A E, Kind A J, Ritchie W A, Mycock K, Scott A R, Ritchie M, Wilmut I, Colman A, Campbell K H S. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 1997, 278(5346): 2130–2133
CrossRef
Pubmed
Google scholar
|
[14] |
Garas L C, Murray J D, Maga E A. Genetically engineered livestock: ethical use for food and medical models. Annual Review of Animal Biosciences, 2015, 3(1): 559–575
CrossRef
Pubmed
Google scholar
|
[15] |
Hsu P D, Lander E S, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6): 1262–1278
CrossRef
Pubmed
Google scholar
|
[16] |
Gaj T, Gersbach C A, Barbas C F 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7): 397–405
CrossRef
Pubmed
Google scholar
|
[17] |
Kawahara A, Hisano Y, Ota S, Taimatsu K. Site-specific integration of exogenous genes using genome editing technologies in zebrafish. International Journal of Molecular Sciences, 2016, 17(5): 727
CrossRef
Pubmed
Google scholar
|
[18] |
Campbell K H, McWhir J, Ritchie W A, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996, 380(6569): 64–66
CrossRef
Pubmed
Google scholar
|
[19] |
Whitelaw C B A, Sheets T P, Lillico S G, Telugu B P. Engineering large animal models of human disease. Journal of Pathology, 2016, 238(2): 247–256
CrossRef
Pubmed
Google scholar
|
[20] |
McCreath K J, Howcroft J, Campbell K H S, Colman A, Schnieke A E, Kind A J. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 2000, 405(6790): 1066–1069
CrossRef
Pubmed
Google scholar
|
[21] |
San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annual Review of Biochemistry, 2008, 77(1): 229–257
CrossRef
Pubmed
Google scholar
|
[22] |
Yu S, Luo J, Song Z, Ding F, Dai Y, Li N. Highly efficient modification of β-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 2011, 21(11): 1638–1640
CrossRef
Pubmed
Google scholar
|
[23] |
Sun Z, Wang M, Han S, Ma S, Zou Z, Ding F, Li X, Li L, Tang B, Wang H, Li N, Che H, Dai Y. Production of hypoallergenic milk from DNA-free β-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Scientific Reports, 2018, 8(1): 15430
CrossRef
Pubmed
Google scholar
|
[24] |
Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva I A, Chen C. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One, 2014, 9(9): e106718
CrossRef
Pubmed
Google scholar
|
[25] |
Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F. Generation of β-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One, 2017, 12(10): e0186056
CrossRef
Pubmed
Google scholar
|
[26] |
Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson D F, Fahrenkrug S C, Wells D N, Laible G. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen β-lactoglobulin. Scientific Reports, 2018, 8(1): 7661
CrossRef
Pubmed
Google scholar
|
[27] |
Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the β-casein locus in cloned cows. Nature Communications, 2013, 4(1): 2565
CrossRef
Pubmed
Google scholar
|
[28] |
Rouet P, Smih F, Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(13): 6064–6068
CrossRef
Pubmed
Google scholar
|
[29] |
Murray J D, Maga E A. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference. Transgenic Research, 2016, 25(3): 321–327
CrossRef
Pubmed
Google scholar
|
[30] |
Li L, Wu L P, Chandrasegaran S. Functional domains in Fok I restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(10): 4275–4279
CrossRef
Pubmed
Google scholar
|
[31] |
Pavletich N P, Pabo C O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science, 1991, 252(5007): 809–817
CrossRef
Pubmed
Google scholar
|
[32] |
Joung J K, Sander J D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology, 2013, 14(1): 49–55
CrossRef
Pubmed
Google scholar
|
[33] |
Händel E M, Alwin S, Cathomen T. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Molecular Therapy, 2009, 17(1): 104–111
CrossRef
Pubmed
Google scholar
|
[34] |
He J, Li Q, Fang S, Guo Y, Liu T, Ye J, Yu Z, Zhang R, Zhao Y, Hu X, Bai X, Chen X, Li N. PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis in a mini-pig model. International Journal of Biological Sciences, 2015, 11(4): 361–369
CrossRef
Pubmed
Google scholar
|
[35] |
Cui C, Song Y, Liu J, Ge H, Li Q, Huang H, Hu L, Zhu H, Jin Y, Zhang Y. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Scientific Reports, 2015, 5(1): 10482
CrossRef
Pubmed
Google scholar
|
[36] |
Moore F E, Reyon D, Sander J D, Martinez S A, Blackburn J S, Khayter C, Ramirez C L, Joung J K, Langenau D M. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS One, 2012, 7(5): e37877
CrossRef
Pubmed
Google scholar
|
[37] |
Xiao A, Wu Y, Yang Z, Hu Y, Wang W, Zhang Y, Kong L, Gao G, Zhu Z, Lin S, Zhang B. EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering. Nucleic Acids Research, 2013, 41(Database Issue): D415–D422
Pubmed
|
[38] |
Cade L, Reyon D, Hwang W Y, Tsai S Q, Patel S, Khayter C, Joung J K, Sander J D, Peterson R T, Yeh J R J. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Research, 2012, 40(16): 8001–8010
CrossRef
Pubmed
Google scholar
|
[39] |
Pattanayak V, Ramirez C L, Joung J K, Liu D R. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature Methods, 2011, 8(9): 765–770
CrossRef
Pubmed
Google scholar
|
[40] |
Gabriel R, Lombardo A, Arens A, Miller J C, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae C C, Wang J, Friedman G, Holmes M C, Gregory P D, Glimm H, Schmidt M, Naldini L, von Kalle C. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature Biotechnology, 2011, 29(9): 816–823
CrossRef
Pubmed
Google scholar
|
[41] |
Grau J, Boch J, Posch S. TALENoffer: genome-wide TALEN off-target prediction. Bioinformatics, 2013, 29(22): 2931–2932
CrossRef
Pubmed
Google scholar
|
[42] |
Sontheimer E J, Barrangou R. The bacterial origins of the CRISPR genome-editing revolution. Human Gene Therapy, 2015, 26(7): 413–424
CrossRef
Pubmed
Google scholar
|
[43] |
Deltcheva E, Chylinski K, Sharma C M, Gonzales K, Chao Y, Pirzada Z A, Eckert M R, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602–607
CrossRef
Pubmed
Google scholar
|
[44] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
CrossRef
Pubmed
Google scholar
|
[45] |
Bolukbasi M F, Gupta A, Wolfe S A. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nature Methods, 2016, 13(1): 41–50
CrossRef
Pubmed
Google scholar
|
[46] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
CrossRef
Pubmed
Google scholar
|
[47] |
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
CrossRef
Pubmed
Google scholar
|
[48] |
Ma T, Tao J, Yang M, He C, Tian X, Zhang X, Zhang J, Deng S, Feng J, Zhang Z, Wang J, Ji P, Song Y, He P, Han H, Fu J, Lian Z, Liu G. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. Journal of Pineal Research, 2017, 63(1): e12406
CrossRef
Pubmed
Google scholar
|
[49] |
Richt J A, Kasinathan P, Hamir A N, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl J M, Kuroiwa Y. Production of cattle lacking prion protein. Nature Biotechnology, 2007, 25(1): 132–138
CrossRef
Pubmed
Google scholar
|
[50] |
Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, King T, Ritchie M, Ritchie W A, Rollo M, de Sousa P, Travers A, Wilmut I, Clark A J. Deletion of the α(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nature Biotechnology, 2001, 19(6): 559–562
CrossRef
Pubmed
Google scholar
|
[51] |
Shanthalingam S, Tibary A, Beever J E, Kasinathan P, Brown W C, Srikumaran S. Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 13186–13190
CrossRef
Pubmed
Google scholar
|
[52] |
Zhang J, Cui M L, Nie Y W, Dai B, Li F R, Liu D J, Liang H, Cang M. CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. FEBS Journal, 2018, 285(15): 2828–2839
CrossRef
Pubmed
Google scholar
|
[53] |
Zhang Y, Wang Y, Yulin B, Tang B, Wang M, Zhang C, Zhang W, Jin J, Li T, Zhao R, Yu X, Zuo Q, Li B. CRISPR/Cas9-mediated sheep MSTN gene knockout and promote sSMSCs differentiation. Journal of Cellular Biochemistry, 2018, 120(2): 1794–1806
CrossRef
Pubmed
Google scholar
|
[54] |
Bertolini L R, Meade H, Lazzarotto C R, Martins L T, Tavares K C, Bertolini M, Murray J D. The transgenic animal platform for biopharmaceutical production. Transgenic Research, 2016, 25(3): 329–343
CrossRef
Pubmed
Google scholar
|
[55] |
Houdebine L M. Production of pharmaceutical proteins by transgenic animals. Comparative Immunology, Microbiology and Infectious Diseases, 2009, 32(2): 107–121
CrossRef
Pubmed
Google scholar
|
[56] |
Yamasaki M, Sendall T J, Pearce M C, Whisstock J C, Huntington J A. Molecular basis of α1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Reports, 2011, 12(10): 1011–1017
CrossRef
Pubmed
Google scholar
|
[57] |
Wang B, Baldassarre H, Tao T, Gauthier M, Neveu N, Zhou J F, Leduc M, Duguay F, Bilodeau A S, Lazaris A, Keefer C, Karatzas C N. Transgenic goats produced by DNA pronuclear microinjection of in vitro derived zygotes. Molecular Reproduction and Development, 2002, 63(4): 437–443
CrossRef
Pubmed
Google scholar
|
[58] |
Esslemont D, Kossaibati M. Mastitis: how to get out of the dark ages. Veterinary Journal, 2002, 164(2): 85–86
CrossRef
Pubmed
Google scholar
|
[59] |
Rainard P. Tackling mastitis in dairy cows. Nature Biotechnology, 2005, 23(4): 430–432
CrossRef
Pubmed
Google scholar
|
[60] |
Wall R J, Powell A M, Paape M J, Kerr D E, Bannerman D D, Pursel V G, Wells K D, Talbot N, Hawk H W. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology, 2005, 23(4): 445–451
CrossRef
Pubmed
Google scholar
|
[61] |
Oldham E R, Daley M J. Lysostaphin: use of a recombinant bactericidal enzyme as a mastitis therapeutic. Journal of Dairy Science, 1991, 74(12): 4175–4182
CrossRef
Pubmed
Google scholar
|
[62] |
Lloyd S E, Mead S, Collinge J. Genetics of prion diseases. Current Opinion in Genetics & Development, 2013, 23(3): 345–351
CrossRef
Pubmed
Google scholar
|
[63] |
Wells G A, Scott A C, Johnson C T, Gunning R F, Hancock R D, Jeffrey M, Dawson M, Bradley R. A novel progressive spongiform encephalopathy in cattle. Veterinary Record, 1987, 121(18): 419–420
CrossRef
Pubmed
Google scholar
|
[64] |
Jeffrey M, González L. Classical sheep transmissible spongiform encephalopathies: pathogenesis, pathological phenotypes and clinical disease. Neuropathology and Applied Neurobiology, 2007, 33(4): 373–394
CrossRef
Pubmed
Google scholar
|
[65] |
Aguilar-Calvo P, García C, Espinosa J C, Andreoletti O, Torres J M. Prion and prion-like diseases in animals. Virus Research, 2015, 207: 82–93
CrossRef
Pubmed
Google scholar
|
[66] |
Prusiner S B, Groth D, Serban A, Koehler R, Foster D, Torchia M, Burton D, Yang S L, DeArmond S J. Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(22): 10608–10612
CrossRef
Pubmed
Google scholar
|
[67] |
Breider M A, Walker R D, Hopkins F M, Schultz T W, Bowersock T L. Pulmonary lesions induced by Pasteurella haemolytica in neutrophil sufficient and neutrophil deficient calves. Canadian Journal of Veterinary Research, 1988, 52(2): 205–209
Pubmed
|
[68] |
Mueller M L, Cole J B, Sonstegard T S, Van Eenennaam A L. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. Journal of Dairy Science, 2019, 102(5): 4215–4226
CrossRef
Pubmed
Google scholar
|
[69] |
Regalado A. Gene-edited cattle have a major screwup in their DNA. MIT Technology Review, 2019 [Published Online] https://www.technologyreview.com/s/614235/recombinetics-gene-edited-hornless-cattle-major-dna-screwup/
|
[70] |
Norris L A, Lee S S, Greenlees K J, Tadesse D A, Miller M F, Lombard H. Template plasmid integration in germline genome-edited cattle. BioRxiv, 2019 [Published Online] doi:10.1101/715482
|
[71] |
Kleinstiver B P, Pattanayak V, Prew M S, Tsai S Q, Nguyen N T, Zheng Z, Joung J K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490–495
CrossRef
Pubmed
Google scholar
|
[72] |
Slaymaker I M, Gao L, Zetsche B, Scott D A, Yan W X, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science, 2016, 351(6268): 84–88
CrossRef
Pubmed
Google scholar
|
[73] |
Tsai S Q, Nguyen N T, Malagon-Lopez J, Topkar V V, Aryee M J, Joung J K. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nature Methods, 2017, 14(6): 607–614
CrossRef
Pubmed
Google scholar
|
[74] |
Tsai S Q, Zheng Z, Nguyen N T, Liebers M, Topkar V V, Thapar V, Wyvekens N, Khayter C, Iafrate A J, Le L P, Aryee M J, Joung J K. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology, 2015, 33(2): 187–197
CrossRef
Pubmed
Google scholar
|
[75] |
Ehn B M, Ekstrand B, Bengtsson U, Ahlstedt S. Modification of IgE binding during heat processing of the cow’s milk allergen β-lactoglobulin. Journal of Agricultural and Food Chemistry, 2004, 52(5): 1398–1403
CrossRef
Pubmed
Google scholar
|
[76] |
Ehn B M, Allmere T, Telemo E, Bengtsson U, Ekstrand B. Modification of IgE binding to β-lactoglobulin by fermentation and proteolysis of cow’s milk. Journal of Agricultural and Food Chemistry, 2005, 53(9): 3743–3748
CrossRef
Pubmed
Google scholar
|
[77] |
Grobet L, Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71–74
CrossRef
Pubmed
Google scholar
|
[78] |
Dove A. Milking the genome for profit. Nature Biotechnology, 2000, 18(10): 1045–1048
CrossRef
Pubmed
Google scholar
|
[79] |
Brophy B, Smolenski G, Wheeler T, Wells D, L’Huillier P, Laible G. Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nature Biotechnology, 2003, 21(2): 157–162
CrossRef
Pubmed
Google scholar
|
[80] |
Colman A. Somatic cell nuclear transfer in mammals: progress and applications. Cloning, 1999–2000, 1(4): 185–200
CrossRef
Pubmed
Google scholar
|
[81] |
Zhang J P, Li X L, Li G H, Chen W, Arakaki C, Botimer G D, Baylink D, Zhang L, Wen W, Fu Y W, Xu J, Chun N, Yuan W, Cheng T, Zhang X B. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biology, 2017, 18(1): 35
CrossRef
Pubmed
Google scholar
|
[82] |
Song J, Yang D, Xu J, Zhu T, Chen Y E, Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nature Communications, 2016, 7(1): 10548
CrossRef
Pubmed
Google scholar
|
[83] |
Kipriyanov S M, Moldenhauer G, Braunagel M, Reusch U, Cochlovius B, Le Gall F, Kouprianova O A, Von der Lieth C W, Little M. Effect of domain order on the activity of bacterially produced bispecific single-chain Fv antibodies. Journal of Molecular Biology, 2003, 330(1): 99–111
CrossRef
Pubmed
Google scholar
|
[84] |
Little M, Kipriyanov S M, Le Gall F, Moldenhauer G. Of mice and men: hybridoma and recombinant antibodies. Immunology Today, 2000, 21(8): 364–370
CrossRef
Pubmed
Google scholar
|
[85] |
Walsh G. Biopharmaceutical benchmarks 2014. Nature Biotechnology, 2014, 32(10): 992–1000
CrossRef
Pubmed
Google scholar
|
[86] |
Grosse-Hovest L, Müller S, Minoia R, Wolf E, Zakhartchenko V, Wenigerkind H, Lassnig C, Besenfelder U, Müller M, Lytton S D, Jung G, Brem G. Cloned transgenic farm animals produce a bispecific antibody for T cell-mediated tumor cell killing. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(18): 6858–6863
CrossRef
Pubmed
Google scholar
|
[87] |
Fan Z, Perisse I V, Cotton C U, Regouski M, Meng Q, Domb C, Van Wettere A J, Wang Z, Harris A, White K L, Polejaeva I A. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight, 2018, 3(19): e123529
CrossRef
Pubmed
Google scholar
|
[88] |
Williams D K, Pinzón C, Huggins S, Pryor J H, Falck A, Herman F, Oldeschulte J, Chavez M B, Foster B L, White S H, Westhusin M E, Suva L J, Long C R, Gaddy D. Genetic engineering a large animal model of human hypophosphatasia in sheep. Scientific Reports, 2018, 8(1): 16945
CrossRef
Pubmed
Google scholar
|
[89] |
Du S J, Gong Z Y, Fletcher G L, Shears M A, King M J, Idler D R, Hew C L. Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Bio-Technology, 1992, 10(2): 176–181
Pubmed
|
[90] |
Kling J. First US approval for a transgenic animal drug. Nature Biotechnology, 2009, 27(4): 302–304
CrossRef
Pubmed
Google scholar
|
[91] |
van Veen H A, Koiter J, Vogelezang C J M, van Wessel N, van Dam T, Velterop I, van Houdt K, Kupers L, Horbach D, Salaheddine M, Nuijens J H, Mannesse M L M. Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits. Journal of Biotechnology, 2012, 162(2–3): 319–326
CrossRef
Pubmed
Google scholar
|
[92] |
Sheridan C. FDA approves ‘farmaceutical’ drug from transgenic chickens. Nature Biotechnology, 2016, 34(2): 117–119
CrossRef
Pubmed
Google scholar
|
[93] |
Bruce A. Genome edited animals: learning from GM crops? Transgenic Research, 2017, 26(3): 385–398
CrossRef
Pubmed
Google scholar
|
[94] |
Ishii T. Genome-edited livestock: ethics and social acceptance. Animal Frontiers, 2017, 7(2): 24–32
CrossRef
Google scholar
|
[95] |
Schicktanz S. Ethical considerations of the human-animal-relationship under conditions of asymmetry and ambivalence. Journal of Agricultural & Environmental Ethics, 2006, 19(1): 7–16
CrossRef
Google scholar
|
/
〈 | 〉 |