The development and application of genome editing technology in ruminants: a review

Mengke YUAN, Yuanpeng GAO, Jing HAN, Teng WU, Jingcheng ZHANG, Yongke WEI, Yong ZHANG

PDF(416 KB)
PDF(416 KB)
Front. Agr. Sci. Eng. ›› 2020, Vol. 7 ›› Issue (2) : 171-180. DOI: 10.15302/J-FASE-2019302
REVIEW
REVIEW

The development and application of genome editing technology in ruminants: a review

Author information +
History +

Abstract

Transgenic ruminants are a valuable resource for both animal breeding and biomedical research. The development of transgenic breeding is proceeding slowly, because it suffers from low efficiency of gene transfer and possible safety problems from uncontrolled random integration. However, new breeding methods combined with genome editing and somatic cell nuclear transfer or microinjection can offer an economic and efficient way to produce gene-edited ruminants, which can serve as bioreactors or have improved disease resistance, animal welfare and product quality. Recent advances in precise genome editing technologies, especially clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nucleases, are enabling the systematic development of gene-edited ruminant production. This review covers the development of gene-edited ruminants, the particulars of site-specific engineered nucleases and the state of the art and new insights into practical applications and social acceptance of genome editing technology in ruminants. It is concluded that the production of gene-edited ruminants is feasible and through improvements in genome editing technology it is possible to help feed the world.

Keywords

bioreactors / breeding / engineered endonucleases / genome editing / ruminants

Cite this article

Download citation ▾
Mengke YUAN, Yuanpeng GAO, Jing HAN, Teng WU, Jingcheng ZHANG, Yongke WEI, Yong ZHANG. The development and application of genome editing technology in ruminants: a review. Front. Agr. Sci. Eng., 2020, 7(2): 171‒180 https://doi.org/10.15302/J-FASE-2019302

References

[1]
Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, Cui C, Liu X, Zhang J, Zhang Y. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 2017, 18(1): 13
CrossRef Pubmed Google scholar
[2]
Miao X. Recent advances in the development of new transgenic animal technology. Cellular and Molecular Life Sciences, 2013, 70(5): 815–828
CrossRef Pubmed Google scholar
[3]
Carlson D F, Lancto C A, Zang B, Kim E S, Walton M, Oldeschulte D, Seabury C, Sonstegard T S, Fahrenkrug S C. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 2016, 34(5): 479–481
CrossRef Pubmed Google scholar
[4]
Luo J, Song Z, Yu S, Cui D, Wang B, Ding F, Li S, Dai Y, Li N. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS One, 2014, 9(4): e95225
CrossRef Pubmed Google scholar
[5]
Hammer R E, Pursel V G, Rexroad C E Jr, Wall R J, Bolt D J, Ebert K M, Palmiter R D, Brinster R L. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315(6021): 680–683
CrossRef Pubmed Google scholar
[6]
Lillico S G, Proudfoot C, Carlson D F, Stverakova D, Neil C, Blain C, King T J, Ritchie W A, Tan W, Mileham A J, McLaren D G, Fahrenkrug S C, Whitelaw C B A. Live pigs produced from genome edited zygotes. Scientific Reports, 2013, 3(1): 2847
CrossRef Pubmed Google scholar
[7]
Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): E1530–E1539
CrossRef Pubmed Google scholar
[8]
Capecchi M R. How close are we to implementing gene targeting in animals other than the mouse? Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(3): 956–957
CrossRef Pubmed Google scholar
[9]
Baguisi A, Behboodi E, Melican D T, Pollock J S, Destrempes M M, Cammuso C, Williams J L, Nims S D, Porter C A, Midura P, Palacios M J, Ayres S L, Denniston R S, Hayes M L, Ziomek C A, Meade H M, Godke R A, Gavin W G, Overström E W, Echelard Y. Production of goats by somatic cell nuclear transfer. Nature Biotechnology, 1999, 17(5): 456–461
CrossRef Pubmed Google scholar
[10]
Cibelli J B, Stice S L, Golueke P J, Kane J J, Jerry J, Blackwell C, Ponce de León F A, Robl J M. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280(5367): 1256–1258
CrossRef Pubmed Google scholar
[11]
Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H, Tsunoda Y. Eight calves cloned from somatic cells of a single adult. Science, 1998, 282(5396): 2095–2098
CrossRef Pubmed Google scholar
[12]
Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H S. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810–813
CrossRef Pubmed Google scholar
[13]
Schnieke A E, Kind A J, Ritchie W A, Mycock K, Scott A R, Ritchie M, Wilmut I, Colman A, Campbell K H S. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 1997, 278(5346): 2130–2133
CrossRef Pubmed Google scholar
[14]
Garas L C, Murray J D, Maga E A. Genetically engineered livestock: ethical use for food and medical models. Annual Review of Animal Biosciences, 2015, 3(1): 559–575
CrossRef Pubmed Google scholar
[15]
Hsu P D, Lander E S, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6): 1262–1278
CrossRef Pubmed Google scholar
[16]
Gaj T, Gersbach C A, Barbas C F 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7): 397–405
CrossRef Pubmed Google scholar
[17]
Kawahara A, Hisano Y, Ota S, Taimatsu K. Site-specific integration of exogenous genes using genome editing technologies in zebrafish. International Journal of Molecular Sciences, 2016, 17(5): 727
CrossRef Pubmed Google scholar
[18]
Campbell K H, McWhir J, Ritchie W A, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996, 380(6569): 64–66
CrossRef Pubmed Google scholar
[19]
Whitelaw C B A, Sheets T P, Lillico S G, Telugu B P. Engineering large animal models of human disease. Journal of Pathology, 2016, 238(2): 247–256
CrossRef Pubmed Google scholar
[20]
McCreath K J, Howcroft J, Campbell K H S, Colman A, Schnieke A E, Kind A J. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 2000, 405(6790): 1066–1069
CrossRef Pubmed Google scholar
[21]
San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annual Review of Biochemistry, 2008, 77(1): 229–257
CrossRef Pubmed Google scholar
[22]
Yu S, Luo J, Song Z, Ding F, Dai Y, Li N. Highly efficient modification of β-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 2011, 21(11): 1638–1640
CrossRef Pubmed Google scholar
[23]
Sun Z, Wang M, Han S, Ma S, Zou Z, Ding F, Li X, Li L, Tang B, Wang H, Li N, Che H, Dai Y. Production of hypoallergenic milk from DNA-free β-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Scientific Reports, 2018, 8(1): 15430
CrossRef Pubmed Google scholar
[24]
Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva I A, Chen C. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One, 2014, 9(9): e106718
CrossRef Pubmed Google scholar
[25]
Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F. Generation of β-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One, 2017, 12(10): e0186056
CrossRef Pubmed Google scholar
[26]
Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson D F, Fahrenkrug S C, Wells D N, Laible G. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen β-lactoglobulin. Scientific Reports, 2018, 8(1): 7661
CrossRef Pubmed Google scholar
[27]
Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the β-casein locus in cloned cows. Nature Communications, 2013, 4(1): 2565
CrossRef Pubmed Google scholar
[28]
Rouet P, Smih F, Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(13): 6064–6068
CrossRef Pubmed Google scholar
[29]
Murray J D, Maga E A. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference. Transgenic Research, 2016, 25(3): 321–327
CrossRef Pubmed Google scholar
[30]
Li L, Wu L P, Chandrasegaran S. Functional domains in Fok I restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(10): 4275–4279
CrossRef Pubmed Google scholar
[31]
Pavletich N P, Pabo C O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science, 1991, 252(5007): 809–817
CrossRef Pubmed Google scholar
[32]
Joung J K, Sander J D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology, 2013, 14(1): 49–55
CrossRef Pubmed Google scholar
[33]
Händel E M, Alwin S, Cathomen T. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Molecular Therapy, 2009, 17(1): 104–111
CrossRef Pubmed Google scholar
[34]
He J, Li Q, Fang S, Guo Y, Liu T, Ye J, Yu Z, Zhang R, Zhao Y, Hu X, Bai X, Chen X, Li N. PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis in a mini-pig model. International Journal of Biological Sciences, 2015, 11(4): 361–369
CrossRef Pubmed Google scholar
[35]
Cui C, Song Y, Liu J, Ge H, Li Q, Huang H, Hu L, Zhu H, Jin Y, Zhang Y. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Scientific Reports, 2015, 5(1): 10482
CrossRef Pubmed Google scholar
[36]
Moore F E, Reyon D, Sander J D, Martinez S A, Blackburn J S, Khayter C, Ramirez C L, Joung J K, Langenau D M. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS One, 2012, 7(5): e37877
CrossRef Pubmed Google scholar
[37]
Xiao A, Wu Y, Yang Z, Hu Y, Wang W, Zhang Y, Kong L, Gao G, Zhu Z, Lin S, Zhang B. EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering. Nucleic Acids Research, 2013, 41(Database Issue): D415–D422
Pubmed
[38]
Cade L, Reyon D, Hwang W Y, Tsai S Q, Patel S, Khayter C, Joung J K, Sander J D, Peterson R T, Yeh J R J. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Research, 2012, 40(16): 8001–8010
CrossRef Pubmed Google scholar
[39]
Pattanayak V, Ramirez C L, Joung J K, Liu D R. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature Methods, 2011, 8(9): 765–770
CrossRef Pubmed Google scholar
[40]
Gabriel R, Lombardo A, Arens A, Miller J C, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae C C, Wang J, Friedman G, Holmes M C, Gregory P D, Glimm H, Schmidt M, Naldini L, von Kalle C. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature Biotechnology, 2011, 29(9): 816–823
CrossRef Pubmed Google scholar
[41]
Grau J, Boch J, Posch S. TALENoffer: genome-wide TALEN off-target prediction. Bioinformatics, 2013, 29(22): 2931–2932
CrossRef Pubmed Google scholar
[42]
Sontheimer E J, Barrangou R. The bacterial origins of the CRISPR genome-editing revolution. Human Gene Therapy, 2015, 26(7): 413–424
CrossRef Pubmed Google scholar
[43]
Deltcheva E, Chylinski K, Sharma C M, Gonzales K, Chao Y, Pirzada Z A, Eckert M R, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602–607
CrossRef Pubmed Google scholar
[44]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
CrossRef Pubmed Google scholar
[45]
Bolukbasi M F, Gupta A, Wolfe S A. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nature Methods, 2016, 13(1): 41–50
CrossRef Pubmed Google scholar
[46]
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
CrossRef Pubmed Google scholar
[47]
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
CrossRef Pubmed Google scholar
[48]
Ma T, Tao J, Yang M, He C, Tian X, Zhang X, Zhang J, Deng S, Feng J, Zhang Z, Wang J, Ji P, Song Y, He P, Han H, Fu J, Lian Z, Liu G. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. Journal of Pineal Research, 2017, 63(1): e12406
CrossRef Pubmed Google scholar
[49]
Richt J A, Kasinathan P, Hamir A N, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl J M, Kuroiwa Y. Production of cattle lacking prion protein. Nature Biotechnology, 2007, 25(1): 132–138
CrossRef Pubmed Google scholar
[50]
Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, King T, Ritchie M, Ritchie W A, Rollo M, de Sousa P, Travers A, Wilmut I, Clark A J. Deletion of the α(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nature Biotechnology, 2001, 19(6): 559–562
CrossRef Pubmed Google scholar
[51]
Shanthalingam S, Tibary A, Beever J E, Kasinathan P, Brown W C, Srikumaran S. Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 13186–13190
CrossRef Pubmed Google scholar
[52]
Zhang J, Cui M L, Nie Y W, Dai B, Li F R, Liu D J, Liang H, Cang M. CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. FEBS Journal, 2018, 285(15): 2828–2839
CrossRef Pubmed Google scholar
[53]
Zhang Y, Wang Y, Yulin B, Tang B, Wang M, Zhang C, Zhang W, Jin J, Li T, Zhao R, Yu X, Zuo Q, Li B. CRISPR/Cas9-mediated sheep MSTN gene knockout and promote sSMSCs differentiation. Journal of Cellular Biochemistry, 2018, 120(2): 1794–1806
CrossRef Pubmed Google scholar
[54]
Bertolini L R, Meade H, Lazzarotto C R, Martins L T, Tavares K C, Bertolini M, Murray J D. The transgenic animal platform for biopharmaceutical production. Transgenic Research, 2016, 25(3): 329–343
CrossRef Pubmed Google scholar
[55]
Houdebine L M. Production of pharmaceutical proteins by transgenic animals. Comparative Immunology, Microbiology and Infectious Diseases, 2009, 32(2): 107–121
CrossRef Pubmed Google scholar
[56]
Yamasaki M, Sendall T J, Pearce M C, Whisstock J C, Huntington J A. Molecular basis of α1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Reports, 2011, 12(10): 1011–1017
CrossRef Pubmed Google scholar
[57]
Wang B, Baldassarre H, Tao T, Gauthier M, Neveu N, Zhou J F, Leduc M, Duguay F, Bilodeau A S, Lazaris A, Keefer C, Karatzas C N. Transgenic goats produced by DNA pronuclear microinjection of in vitro derived zygotes. Molecular Reproduction and Development, 2002, 63(4): 437–443
CrossRef Pubmed Google scholar
[58]
Esslemont D, Kossaibati M. Mastitis: how to get out of the dark ages. Veterinary Journal, 2002, 164(2): 85–86
CrossRef Pubmed Google scholar
[59]
Rainard P. Tackling mastitis in dairy cows. Nature Biotechnology, 2005, 23(4): 430–432
CrossRef Pubmed Google scholar
[60]
Wall R J, Powell A M, Paape M J, Kerr D E, Bannerman D D, Pursel V G, Wells K D, Talbot N, Hawk H W. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology, 2005, 23(4): 445–451
CrossRef Pubmed Google scholar
[61]
Oldham E R, Daley M J. Lysostaphin: use of a recombinant bactericidal enzyme as a mastitis therapeutic. Journal of Dairy Science, 1991, 74(12): 4175–4182
CrossRef Pubmed Google scholar
[62]
Lloyd S E, Mead S, Collinge J. Genetics of prion diseases. Current Opinion in Genetics & Development, 2013, 23(3): 345–351
CrossRef Pubmed Google scholar
[63]
Wells G A, Scott A C, Johnson C T, Gunning R F, Hancock R D, Jeffrey M, Dawson M, Bradley R. A novel progressive spongiform encephalopathy in cattle. Veterinary Record, 1987, 121(18): 419–420
CrossRef Pubmed Google scholar
[64]
Jeffrey M, González L. Classical sheep transmissible spongiform encephalopathies: pathogenesis, pathological phenotypes and clinical disease. Neuropathology and Applied Neurobiology, 2007, 33(4): 373–394
CrossRef Pubmed Google scholar
[65]
Aguilar-Calvo P, García C, Espinosa J C, Andreoletti O, Torres J M. Prion and prion-like diseases in animals. Virus Research, 2015, 207: 82–93
CrossRef Pubmed Google scholar
[66]
Prusiner S B, Groth D, Serban A, Koehler R, Foster D, Torchia M, Burton D, Yang S L, DeArmond S J. Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(22): 10608–10612
CrossRef Pubmed Google scholar
[67]
Breider M A, Walker R D, Hopkins F M, Schultz T W, Bowersock T L. Pulmonary lesions induced by Pasteurella haemolytica in neutrophil sufficient and neutrophil deficient calves. Canadian Journal of Veterinary Research, 1988, 52(2): 205–209
Pubmed
[68]
Mueller M L, Cole J B, Sonstegard T S, Van Eenennaam A L. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. Journal of Dairy Science, 2019, 102(5): 4215–4226
CrossRef Pubmed Google scholar
[69]
Regalado A. Gene-edited cattle have a major screwup in their DNA. MIT Technology Review, 2019 [Published Online] https://www.technologyreview.com/s/614235/recombinetics-gene-edited-hornless-cattle-major-dna-screwup/
[70]
Norris L A, Lee S S, Greenlees K J, Tadesse D A, Miller M F, Lombard H. Template plasmid integration in germline genome-edited cattle. BioRxiv, 2019 [Published Online] doi:10.1101/715482
[71]
Kleinstiver B P, Pattanayak V, Prew M S, Tsai S Q, Nguyen N T, Zheng Z, Joung J K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490–495
CrossRef Pubmed Google scholar
[72]
Slaymaker I M, Gao L, Zetsche B, Scott D A, Yan W X, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science, 2016, 351(6268): 84–88
CrossRef Pubmed Google scholar
[73]
Tsai S Q, Nguyen N T, Malagon-Lopez J, Topkar V V, Aryee M J, Joung J K. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nature Methods, 2017, 14(6): 607–614
CrossRef Pubmed Google scholar
[74]
Tsai S Q, Zheng Z, Nguyen N T, Liebers M, Topkar V V, Thapar V, Wyvekens N, Khayter C, Iafrate A J, Le L P, Aryee M J, Joung J K. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology, 2015, 33(2): 187–197
CrossRef Pubmed Google scholar
[75]
Ehn B M, Ekstrand B, Bengtsson U, Ahlstedt S. Modification of IgE binding during heat processing of the cow’s milk allergen β-lactoglobulin. Journal of Agricultural and Food Chemistry, 2004, 52(5): 1398–1403
CrossRef Pubmed Google scholar
[76]
Ehn B M, Allmere T, Telemo E, Bengtsson U, Ekstrand B. Modification of IgE binding to β-lactoglobulin by fermentation and proteolysis of cow’s milk. Journal of Agricultural and Food Chemistry, 2005, 53(9): 3743–3748
CrossRef Pubmed Google scholar
[77]
Grobet L, Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71–74
CrossRef Pubmed Google scholar
[78]
Dove A. Milking the genome for profit. Nature Biotechnology, 2000, 18(10): 1045–1048
CrossRef Pubmed Google scholar
[79]
Brophy B, Smolenski G, Wheeler T, Wells D, L’Huillier P, Laible G. Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nature Biotechnology, 2003, 21(2): 157–162
CrossRef Pubmed Google scholar
[80]
Colman A. Somatic cell nuclear transfer in mammals: progress and applications. Cloning, 1999–2000, 1(4): 185–200
CrossRef Pubmed Google scholar
[81]
Zhang J P, Li X L, Li G H, Chen W, Arakaki C, Botimer G D, Baylink D, Zhang L, Wen W, Fu Y W, Xu J, Chun N, Yuan W, Cheng T, Zhang X B. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biology, 2017, 18(1): 35
CrossRef Pubmed Google scholar
[82]
Song J, Yang D, Xu J, Zhu T, Chen Y E, Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nature Communications, 2016, 7(1): 10548
CrossRef Pubmed Google scholar
[83]
Kipriyanov S M, Moldenhauer G, Braunagel M, Reusch U, Cochlovius B, Le Gall F, Kouprianova O A, Von der Lieth C W, Little M. Effect of domain order on the activity of bacterially produced bispecific single-chain Fv antibodies. Journal of Molecular Biology, 2003, 330(1): 99–111
CrossRef Pubmed Google scholar
[84]
Little M, Kipriyanov S M, Le Gall F, Moldenhauer G. Of mice and men: hybridoma and recombinant antibodies. Immunology Today, 2000, 21(8): 364–370
CrossRef Pubmed Google scholar
[85]
Walsh G. Biopharmaceutical benchmarks 2014. Nature Biotechnology, 2014, 32(10): 992–1000
CrossRef Pubmed Google scholar
[86]
Grosse-Hovest L, Müller S, Minoia R, Wolf E, Zakhartchenko V, Wenigerkind H, Lassnig C, Besenfelder U, Müller M, Lytton S D, Jung G, Brem G. Cloned transgenic farm animals produce a bispecific antibody for T cell-mediated tumor cell killing. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(18): 6858–6863
CrossRef Pubmed Google scholar
[87]
Fan Z, Perisse I V, Cotton C U, Regouski M, Meng Q, Domb C, Van Wettere A J, Wang Z, Harris A, White K L, Polejaeva I A. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight, 2018, 3(19): e123529
CrossRef Pubmed Google scholar
[88]
Williams D K, Pinzón C, Huggins S, Pryor J H, Falck A, Herman F, Oldeschulte J, Chavez M B, Foster B L, White S H, Westhusin M E, Suva L J, Long C R, Gaddy D. Genetic engineering a large animal model of human hypophosphatasia in sheep. Scientific Reports, 2018, 8(1): 16945
CrossRef Pubmed Google scholar
[89]
Du S J, Gong Z Y, Fletcher G L, Shears M A, King M J, Idler D R, Hew C L. Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Bio-Technology, 1992, 10(2): 176–181
Pubmed
[90]
Kling J. First US approval for a transgenic animal drug. Nature Biotechnology, 2009, 27(4): 302–304
CrossRef Pubmed Google scholar
[91]
van Veen H A, Koiter J, Vogelezang C J M, van Wessel N, van Dam T, Velterop I, van Houdt K, Kupers L, Horbach D, Salaheddine M, Nuijens J H, Mannesse M L M. Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits. Journal of Biotechnology, 2012, 162(2–3): 319–326
CrossRef Pubmed Google scholar
[92]
Sheridan C. FDA approves ‘farmaceutical’ drug from transgenic chickens. Nature Biotechnology, 2016, 34(2): 117–119
CrossRef Pubmed Google scholar
[93]
Bruce A. Genome edited animals: learning from GM crops? Transgenic Research, 2017, 26(3): 385–398
CrossRef Pubmed Google scholar
[94]
Ishii T. Genome-edited livestock: ethics and social acceptance. Animal Frontiers, 2017, 7(2): 24–32
CrossRef Google scholar
[95]
Schicktanz S. Ethical considerations of the human-animal-relationship under conditions of asymmetry and ambivalence. Journal of Agricultural & Environmental Ethics, 2006, 19(1): 7–16
CrossRef Google scholar

Acknowledgements

This work was supported by the National Major Project for Production of Transgenic Breeding (2016ZX08007003). We thank the FASE team for editing the English draft of this manuscript.

Compliance with ethics guidelines

Mengke Yuan, Yuanpeng Gao, Jing Han, Teng Wu, Jingcheng Zhang, Yongke Wei, and Yong Zhang declare that they have no conflicts of interest or financial conflicts to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2019. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(416 KB)

Accesses

Citations

Detail

Sections
Recommended

/