Cronobacter spp., foodborne pathogens threatening neonates and infants

Qiming CHEN, Yang ZHU, Zhen QIN, Yongjun QIU, Liming ZHAO

PDF(322 KB)
PDF(322 KB)
Front. Agr. Sci. Eng. ›› 2018, Vol. 5 ›› Issue (3) : 330-339. DOI: 10.15302/J-FASE-2018208
REVIEW
REVIEW

Cronobacter spp., foodborne pathogens threatening neonates and infants

Author information +
History +

Abstract

Cronobacter spp. (formerly Enterobacter sakazakii) are special foodborne pathogens. Cronobacter infection can cause necrotizing enterocolitis, sepsis and meningitis in all age groups, especially neonates and infants, with a high fatality of up to 80%, although the infection is rare. Outbreaks of Cronobacter infection are epidemiologically proven to be associated with contaminated powdered infant formula (PIF). Cronobacter spp. can resist dry environments and survive for a long period in food with low water activity. Therefore, Cronobacter spp. have become serious pathogens of neonates and infants, as well as in the dairy industry. In this review, we present the taxonomy, pathogenesis, resistance, detection and control of Cronobacter spp.

Keywords

Cronobacter spp. / desiccation resistance / pathogen control / pathogen detection / powdered infant formula

Cite this article

Download citation ▾
Qiming CHEN, Yang ZHU, Zhen QIN, Yongjun QIU, Liming ZHAO. Cronobacter spp., foodborne pathogens threatening neonates and infants. Front. Agr. Sci. Eng., 2018, 5(3): 330‒339 https://doi.org/10.15302/J-FASE-2018208

References

[1]
Iversen C, Mullane N, McCardell B, Tall B D, Lehner A, Fanning S, Stephan R, Joosten H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(6): 1442–1447
CrossRef Pubmed Google scholar
[2]
Li Y, Cao L, Zhao J, Cheng Q, Lu F, Bie X, Lu Z. Use of rpoB gene sequence analysis for phylogenetic identification of Cronobacter species. Journal of Microbiological Methods, 2012, 88(2): 316–318
CrossRef Pubmed Google scholar
[3]
Healy B, Cooney S, O’Brien S, Iversen C, Whyte P, Nally J, Callanan J J, Fanning S. Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathogens and Disease, 2010, 7(4): 339–350
CrossRef Pubmed Google scholar
[4]
Townsend S, Hurrell E, Forsythe S. Virulence studies of Enterobacter sakazakii isolates associated with a neonatal intensive care unit outbreak. BMC Microbiology, 2008, 8(1): 64
CrossRef Pubmed Google scholar
[5]
Hoque A, Ahmed T, Shahidullah M, Hossain A, Mannan A, Noor K, Nahar K, Ilias M, Ahmed D. Isolation and molecular identification of Cronobacter spp. from powdered infant formula (PIF) in Bangladesh. International Journal of Food Microbiology, 2010, 142(3): 375–378
CrossRef Pubmed Google scholar
[6]
Forsythe S. Powdered Infant Formula In: Gurtler Joshua B., Doyle Michael P., Kornacki Jeffrey L. The microbiological safety of low water activity foods and spices.New York: Springer New York, 2014: 177–211
[7]
Urmenyi A M, Franklin A W. Neonatal death from pigmented coliform infection. Lancet, 1961, 1(7172): 313–315
CrossRef Pubmed Google scholar
[8]
Joker R N, Norholm T, Siboni K E. A case of neonatal meningitis caused by a yellow enterobacter. Danish Medical Bulletin, 1965, 12(5): 128–130
Pubmed
[9]
Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Fanning S, Stephan R, Joosten H. The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evolutionary Biology, 2007, 7(1): 64
CrossRef Pubmed Google scholar
[10]
Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras M J, Forsythe S J. Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(6): 1277–1283
CrossRef Pubmed Google scholar
[11]
Maiden M C J, Jansen van Rensburg M J, Bray J E, Earle S G, Ford S A, Jolley K A, McCarthy N D. MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Reviews. Microbiology, 2013, 11(10): 728–736
CrossRef Pubmed Google scholar
[12]
Joseph S, Sonbol H, Hariri S, Desai P, McClelland M, Forsythe S J. Diversity of the Cronobacter genus as revealed by multilocus sequence typing. Journal of Clinical Microbiology, 2012, 50(9): 3031–3039
CrossRef Pubmed Google scholar
[13]
Stoll B J, Hansen N, Fanaroff A A, Lemons J A, Natl Inst Child Hlth Human Dev N. Enterobacter sakazakii is a rare cause of neonatal septicemia or meningitis in VLBW infants. Journal of Pediatrics, 2004, 144(6): 821–823
Pubmed
[14]
Hunter C J, Bean J F. Cronobacter: an emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis. Journal of Perinatology, 2013, 33(8): 581–585
CrossRef Pubmed Google scholar
[15]
Minor T, Lasher A, Klontz K, Brown B, Nardinelli C, Zorn D. The per case and total annual costs of foodborne illness in the United States. Risk Analysis, 2015, 35(6): 1125–1139
CrossRef Pubmed Google scholar
[16]
Dumen E. Cronobacter sakazakii: only an infant problem? Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 2010, 16: 171–178
[17]
Almajed F S, Forsythe S. Virulence Traits in the Cronobacter Genus In: Gurtler Joshua B., Doyle Michael P., Kornacki Jeffrey L. Foodborne Pathogens: Virulence Factors and Host Susceptibility.Cham: Springer International Publishing, 2017: 123–150
[18]
Holý O, Forsythe S. Cronobacter spp. as emerging causes of healthcare-associated infection. Journal of Hospital Infection, 2014, 86(3): 169–177
CrossRef Pubmed Google scholar
[19]
Friedemann M. Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections. European Journal of Clinical Microbiology & Infectious Diseases, 2009, 28(11): 1297–1304
CrossRef Pubmed Google scholar
[20]
Grishin A, Papillon S, Bell B, Wang J, Ford H R. The role of the intestinal microbiota in the pathogenesis of necrotizing enterocolitis. Seminars in Pediatric Surgery, 2013, 22(2): 69–75
CrossRef Pubmed Google scholar
[21]
Ray P, Das A, Gautam V, Jain N, Narang A, Sharma M. Enterobacter sakazakii in infants: novel phenomenon in India. Indian Journal of Medical Microbiology, 2007, 25(4): 408–410
CrossRef Pubmed Google scholar
[22]
Anonymous, 0. Cronobacter species isolation in two infants—New Mexico, 2008. Morbidity and Mortality Weekly Report, 2009, 58(42): 1179–1183
Pubmed
[23]
Bhat G K, Anandhi R S, Dhanya V C, Shenoy S M. Urinary tract infection due to Enterobacter sakazakii. Indian Journal of Pathology & Microbiology, 2009, 52(3): 430–431
CrossRef Pubmed Google scholar
[24]
Broge T, Lee A. A case of Cronobacter (Enterobacter sakazakii) bacteremia in a breastfed infant. Journal of the Pediatric Infectious Diseases Society, 2013, 2(4): e1–e2
CrossRef Pubmed Google scholar
[25]
Ravisankar S, Syed S S, Garg P, Higginson J. Is Cronobacter sakazakii infection possible in an exclusively breastfed premature neonate in the neonatal intensive care unit? Journal of Perinatology, 2014, 34(5): 408–409
CrossRef Pubmed Google scholar
[26]
Kim K, Kim K P, Choi J, Lim J A, Lee J, Hwang S, Ryu S. Outer membrane proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of Cronobacter sakazakii. Applied and Environmental Microbiology, 2010, 76(15): 5188–5198
CrossRef Pubmed Google scholar
[27]
Mohan Nair M K,, Venkitanarayanan K, Silbart L K, Kim K S. Outer membrane protein A (OmpA) of Cronobacter sakazakii binds fibronectin and contributes to invasion of human brain microvascular endothelial cells. Foodborne Pathogens and Disease, 2009, 6(4): 495–501
CrossRef Pubmed Google scholar
[28]
Kim K P, Loessner M J. Enterobacter sakazakii invasion in human intestinal Caco-2 cells requires the host cell cytoskeleton and is enhanced by disruption of tight junction. Infection and Immunity, 2008, 76(2): 562–570
CrossRef Pubmed Google scholar
[29]
Townsend S M, Hurrell E, Gonzalez-Gomez I, Lowe J, Frye J G, Forsythe S, Badger J L. Enterobacter sakazakii invades brain capillary endothelial cells, persists in human macrophages influencing cytokine secretion and induces severe brain pathology in the neonatal rat. Microbiology, 2007, 153(10): 3538–3547
CrossRef Pubmed Google scholar
[30]
Pagotto F J, Nazarowec-White M, Bidawid S, Farber J M. Enterobacter sakazakii: infectivity and enterotoxin production in vitro and in vivo. Journal of Food Protection, 2003, 66(3): 370–375
CrossRef Pubmed Google scholar
[31]
Cetin S, Ford H R, Sysko L R, Agarwal C, Wang J, Neal M D, Baty C, Apodaca G, Hackam D J. Endotoxin inhibits intestinal epithelial restitution through activation of Rho-GTPase and increased focal adhesions. Journal of Biological Chemistry, 2004, 279(23): 24592–24600
CrossRef Pubmed Google scholar
[32]
Salomon D, Orth K. Type VI secretion system. Current Biology, 2015, 25(7): R265–R266
CrossRef Pubmed Google scholar
[33]
Kucerova E, Clifton S W, Xia X Q, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, Fulton R, Feng D, Wollam A, Shah N, Bhonagiri V, Nash W E, Hallsworth-Pepin K, Wilson R K, McClelland M, Forsythe S J. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One, 2010, 5(3): e9556
CrossRef Pubmed Google scholar
[34]
Grim C J, Kotewicz M L, Power K A, Gopinath G, Franco A A, Jarvis K G, Yan Q Q, Jackson S A, Sathyamoorthy V, Hu L, Pagotto F, Iversen C, Lehner A, Stephan R, Fanning S, Tall B D. Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics, 2013, 14(1): 366
CrossRef Pubmed Google scholar
[35]
Grim C J, Kothary M H, Gopinath G, Jarvis K G, Beaubrun J J G, McClelland M, Tall B D, Franco A A. Identification and characterization of Cronobacter iron acquisition systems. Applied and Environmental Microbiology, 2012, 78(17): 6035–6050
CrossRef Pubmed Google scholar
[36]
Cruz A, Xicohtencatl-Cortes J, González-Pedrajo B, Bobadilla M, Eslava C, Rosas I. Virulence traits in Cronobacter species isolated from different sources. Canadian Journal of Microbiology, 2011, 57(9): 735–744
CrossRef Pubmed Google scholar
[37]
Jing C E, Du X J, Li P, Wang S. Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8. Applied Microbiology and Biotechnology, 2016, 100(1): 311–322
CrossRef Pubmed Google scholar
[38]
Bao X, Yang L, Chen L, Li B, Li L, Li Y, Xu Z. Virulent and pathogenic features on the Cronobacter sakazakii polymyxin resistant pmr mutant strain s-3. Microbial Pathogenesis, 2017, 110: 359–364
CrossRef Pubmed Google scholar
[39]
Kothary M H, McCardell B A, Frazar C D, Deer D, Tall B D. Characterization of the zinc-containing metalloprotease encoded by zpx and development of a species-specific detection method for Enterobacter sakazakii. Applied and Environmental Microbiology, 2007, 73(13): 4142–4151
CrossRef Pubmed Google scholar
[40]
Franco A A, Hu L, Grim C J, Gopinath G, Sathyamoorthy V, Jarvis K G, Lee C, Sadowski J, Kim J, Kothary M H, McCardell B A, Tall B D. Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Applied and Environmental Microbiology, 2011, 77(10): 3255–3267
CrossRef Pubmed Google scholar
[41]
Kuzina L V, Peloquin J J, Vacek D C, Miller T A. Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Current Microbiology, 2001, 42(4): 290–294
CrossRef Pubmed Google scholar
[42]
Friedemann M. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). International Journal of Food Microbiology, 2007, 116(1): 1–10
CrossRef Pubmed Google scholar
[43]
Chon J W, Song K Y, Kim S Y, Hyeon J Y, Seo K H. Isolation and characterization of Cronobacter from desiccated foods in Korea. Journal of Food Science, 2012, 77(7): M354–M358
CrossRef Pubmed Google scholar
[44]
Kilonzo-Nthenge A, Rotich E, Godwin S, Nahashon S, Chen F. Prevalence and antimicrobial resistance of Cronobacter sakazakii isolated from domestic kitchens in middle Tennessee, United States. Journal of Food Protection, 2012, 75(8): 1512–1517
CrossRef Pubmed Google scholar
[45]
Gitapratiwi D, Dewantihariyadi R, Hidayat S. Genetic relatedness of Cronobacter spp. (Enterobacter sakazakii) isolated from dried food products in Indonesia. International Food Research Journal, 2012, 19(4): 1745–1749
[46]
Lee Y D, Park J H, Chang H. Detection, antibiotic susceptibility and biofilm formation of Cronobacter spp. from various foods in Korea. Food Control, 2012, 24(1–2): 225–230
CrossRef Google scholar
[47]
Putthana V, Marounek M, Brenova N, Mrazek J, Lukesova D. Isolation and characterization of Cronobacter spp. from environmental and food resources. Agricultural Systems, 2012, 45(1): 5–11
[48]
Belal M, Al-Mariri A, Hallab L, Hamad I. Detection of Cronobacter spp. (formerly Enterobacter sakazakii) from medicinal plants and spices in Syria. Journal of Infection in Developing Countries, 2013, 7(2): 82–89
CrossRef Pubmed Google scholar
[49]
El-Gamal M S, Dairouty R K E, Okda A Y, Salah S H, El-Shamy S M. Incidence and interrelation of Cronobacter sakazakii and other foodborne bacteria in some milk products and infant formula milks in Cairo and Giza area. World Applied Sciences Journal, 2013, 26(9): 1129–1141
[50]
Ogihara H, Kiribe N, Fukuda N, Furukawa S, Morinaga Y, Igimi S. Cronobacter spp. in commercially available dried food in Japan. Biocontrol Science, 2014, 19(4): 209–213
CrossRef Pubmed Google scholar
[51]
Pan Z, Cui J, Lyu G, Du X, Qin L, Guo Y, Xu B, Li W, Cui Z, Zhao C. Isolation and molecular typing of Cronobacter spp. in commercial powdered infant formula and follow-up formula. Foodborne Pathogens and Disease, 2014, 11(6): 456–461
CrossRef Pubmed Google scholar
[52]
Casalinuovo F, Rippa P, Battaglia L, Parisi N. Isolation of Cronobacter spp. (Enterobacter sakazakii) from Artisanal mozzarella. Italian Journal of Food Safety, 2014, 3(1): 1526
CrossRef Pubmed Google scholar
[53]
Chen W Y, Ren J, Zheng-Jun W U, Hang F, Liu Z M, Guo B H. Isolation and identification of Cronobacter sakazakii from raw vegetables. Food Science and Technology, 2014, 39(1): 304–308
[54]
Xu X, Wu Q, Zhang J, Ye Y, Yang X, Dong X. Occurrence and characterization of Cronobacter spp. in powdered formula from Chinese retail markets. Foodborne Pathogens and Disease, 2014, 11(4): 307–312
CrossRef Pubmed Google scholar
[55]
Li Y, Chen Q, Zhao J, Jiang H, Lu F, Bie X, Lu Z. Isolation, identification and antimicrobial resistance of Cronobacter spp. isolated from various foods in China. Food Control, 2014, 37(1): 109–114
CrossRef Google scholar
[56]
Singh N, Goel G, Raghav M. Prevalence and characterization of Cronobacter spp. from various foods, medicinal plants, and environmental samples. Current Microbiology, 2015, 71(1): 31–38
CrossRef Pubmed Google scholar
[57]
Cui J H, Du X L, Wei R J, Zhou H J, Li W, Forsythe S, Cui Z G. Multilocus sequence typing analysis of Cronobacter spp. isolated from China. Archives of Microbiology, 2015, 197(5): 665–672
CrossRef Pubmed Google scholar
[58]
Xu X, Li C, Wu Q, Zhang J, Huang J, Yang G. Prevalence, molecular characterization, and antibiotic susceptibility of Cronobacter spp. in Chinese ready-to-eat foods. International Journal of Food Microbiology, 2015, 204: 17–23
CrossRef Pubmed Google scholar
[59]
Huang Y, Pang Y, Wang H, Tang Z, Zhou Y, Zhang W, Li X, Tan D, Li J, Lin Y, Liu X, Huang W, Shi Y. Occurrence and characterization of Cronobacter spp. in dehydrated rice powder from chinese supermarket. PLoS One, 2015, 10(7): e0131053
CrossRef Pubmed Google scholar
[60]
Fei P, Man C, Lou B, Forsythe S J, Chai Y, Li R, Niu J, Jiang Y. Genotyping and source tracking of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and an infant formula production factory in China. Applied and Environmental Microbiology, 2015, 81(16): 5430–5439
CrossRef Pubmed Google scholar
[61]
Akineden Ö, Murata K J, Gross M, Usleber E. Microbiological quality of raw dried pasta from the german market, with special emphasis on Cronobacter species. Journal of Food Science, 2015, 80(12): M2860–M2867
CrossRef Pubmed Google scholar
[62]
Abdel-Galil F Y, Abdel-Latif H K, Ammar A M, Serry F M E. Studies on prevalence, antimicrobial resistance and survival of Cronobacter Sakazakii. IJHSR, 2016, 6(3): 95–106
[63]
Li Z, Ge W, Li K, Gan J, Zhang Y, Zhang Q, Luo R, Chen L, Liang Y, Wang Q, Xi M, Xia X, Wang X, Yang B. Prevalence and characterization of Cronobacter sakazakii in retail milk-based infant and baby foods in Shaanxi, China. Foodborne Pathogens and Disease, 2016, 13(4): 221–227
CrossRef Pubmed Google scholar
[64]
Vojkovska H, Karpiskova R, Orieskova M, Drahovska H. Characterization of Cronobacter spp. isolated from food of plant origin and environmental samples collected from farms and from supermarkets in the Czech Republic. International Journal of Food Microbiology, 2016, 217: 130–136
CrossRef Pubmed Google scholar
[65]
Brandão M L L, Umeda N S, Jackson E, Forsythe S J, de Filippis I. Isolation, molecular and phenotypic characterization, and antibiotic susceptibility of Cronobacter spp. from Brazilian retail foods. Food Microbiology, 2017, 63: 129–138
CrossRef Pubmed Google scholar
[66]
Heperkan D, Dalkilic-Kaya G, Juneja V K. Cronobacter sakazakii in baby foods and baby food ingredients of dairy origin and microbiological profile of positive samples. Lebensmittel-Wissenschaft-Technologie (LWT)–Food Science and Technology, 2017, 75: 402–407
CrossRef Google scholar
[67]
Muytjens H L, Zanen H C, Sonderkamp H J, Kollée L A, Wachsmuth I K, Farmer J J 3rd. Analysis of eight cases of neonatal meningitis and sepsis due to Enterobacter sakazakii. Journal of Clinical Microbiology, 1983, 18(1): 115–120
Pubmed
[68]
Simmons B P, Gelfand M S, Haas M, Metts L, Ferguson J. Enterobacter sakazakii infections in neonates associated with intrinsic contamination of a powdered infant formula. Infection Control and Hospital Epidemiology, 1989, 10(9): 398–401
CrossRef Pubmed Google scholar
[69]
Arseni A, Malamou-Ladas E, Koutsia C, Xanthou M, Trikka E. Outbreak of colonization of neonates with Enterobacter sakazakii. Journal of Hospital Infection, 1987, 9(2): 143–150
CrossRef Pubmed Google scholar
[70]
Edelson-Mammel S G, Porteous M K, Buchanan R L. Survival of Enterobacter sakazakii in a dehydrated powdered infant formula. Journal of Food Protection, 2005, 68(9): 1900–1902
CrossRef Pubmed Google scholar
[71]
Barron J C, Forsythe S J. Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. Journal of Food Protection, 2007, 70(9): 2111–2117
CrossRef Pubmed Google scholar
[72]
Fei P, Jiang Y, Feng J, Forsythe S J, Li R, Zhou Y, Man C. Antibiotic and desiccation resistance of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and processing environments. Frontiers in Microbiology, 2017, 8: 316
Pubmed
[73]
Osaili T M, Al-Nabulsi A A, Shaker R R, Ayyash M M, Olaimat A N, Abu Al-Hasan A S, Kadora K M, Holley R A. Effects of extended dry storage of powdered infant milk formula on susceptibility of Enterobacter sakazakii to hot water and ionizing radiation. Journal of Food Protection, 2008, 71(5): 934–939
CrossRef Pubmed Google scholar
[74]
Arroyo C, Condón S, Pagán R. Thermobacteriological characterization of Enterobacter sakazakii. International Journal of Food Microbiology, 2009, 136(1): 110–118
CrossRef Pubmed Google scholar
[75]
Obaidat M M, Alu’Datt M H, Bani Salman A E, Obaidat H M, Al-Zyoud A A, Al-Saleh O K, Abu al’anaz B, Alu’Datt M H, Bani Salman A E, Obaidat H M, Al-Zyoud A A, Al-Saleh O K, Abu al’anaz B. Inactivation of nondesiccated and desiccated Cronobacter Sakazakii and Salmonella spp. at low and high inocula levels in reconstituted infant milk formula by vanillin. Food Control, 2015, 50: 850–857
CrossRef Google scholar
[76]
Kim T J, Weng W L, Silva J L, Jung Y S, Marshall D. Identification of natural antimicrobial substances in red muscadine juice against Cronobacter sakazakii. Journal of Food Science, 2010, 75(3): M150–M154
CrossRef Pubmed Google scholar
[77]
Shi C, Sun Y, Zhang X, Zheng Z, Yang M, Ben H, Song K, Cao Y, Chen Y, Liu X, Dong R, Xia X. Antimicrobial effect of lipoic acid against Cronobacter sakazakii. Food Control, 2016, 59: 352–358
CrossRef Google scholar
[78]
Shi C, Zhang X, Sun Y, Yang M, Song K, Zheng Z, Chen Y, Liu X, Jia Z, Dong R, Cui L, Xia X. Antimicrobial activity of ferulic acid against Cronobacter sakazakii and possible mechanism of action. Foodborne Pathogens and Disease, 2016, 13(4): 196–204
CrossRef Pubmed Google scholar
[79]
Zhang Q, Yan T. Correlation of intracellular trehalose concentration with desiccation resistance of soil Escherichia coli populations. Applied and Environmental Microbiology, 2012, 78(20): 7407–7413
CrossRef Pubmed Google scholar
[80]
Mu M, Lu X K, Wang J J, Wang D L, Yin Z J, Wang S, Fan W L, Ye W W. Erratum to: genome-wide identification and analysis of the stress-resistance function of the TPS (Trehalose-6-Phosphate Synthase) gene family in cotton. BMC Genetics, 2016, 17(1): 101
CrossRef Pubmed Google scholar
[81]
Van Dijck P, Colavizza D, Smet P, Thevelein J M. Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Applied and Environmental Microbiology, 1995, 61(1): 109–115
Pubmed
[82]
Breeuwer P, Lardeau A, Peterz M, Joosten H M. Desiccation and heat tolerance of Enterobacter sakazakii. Journal of Applied Microbiology, 2003, 95(5): 967–973
CrossRef Pubmed Google scholar
[83]
Leslie S B, Israeli E, Lighthart B, Crowe J H, Crowe L M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Applied and Environmental Microbiology, 1995, 61(10): 3592–3597
Pubmed
[84]
Álvarez-Ordóñez A, Begley M, Clifford T, Deasy T, Collins B, Hill C. Transposon mutagenesis reveals genes involved in osmotic stress and drying in Cronobacter sakazakii. Food Research International, 2014, 55(2): 45–54
CrossRef Google scholar
[85]
Alvarez-Ordonez A, Hill C. RpoS loss in Cronobacter sakazakii by propagation in the presence of non-preferred carbon sources. International Dairy Journal, 2016, 57: 29–33
CrossRef Google scholar
[86]
Hu S, Yu Y, Wu X, Xia X, Xiao X, Wu H. Comparative proteomic analysis of Cronobacter sakazakii by iTRAQ provides insights into response to desiccation. Food Research International, 2017, 100(1): 631–639
CrossRef Pubmed Google scholar
[87]
Kandhai M C, Reij M W, van Puyvelde K, Guillaume-Gentil O, Beumer R R, van Schothorst M. A new protocol for the detection of Enterobacter sakazakii applied to environmental samples. Journal of Food Protection, 2004, 67(6): 1267–1270
CrossRef Pubmed Google scholar
[88]
Oh S W, Kang D H. Fluorogenic selective and differential medium for isolation of Enterobacter sakazakii. Applied and Environmental Microbiology, 2004, 70(9): 5692–5694
CrossRef Pubmed Google scholar
[89]
Song X, Shukla S, Lee G, Kim M. Immunochromatographic strip assay for detection of Cronobacter sakazakii in pure culture. Journal of Microbiology and Biotechnology, 2016, 26(11): 1855–1862
CrossRef Pubmed Google scholar
[90]
Chen Q, Tao T, Bie X, Lu F, Li Y, Lu Z. Characterization of a single-chain variable fragment specific to Cronobacter spp. from hybridoma based on outer membrane protein A. Journal of Microbiological Methods, 2016, 129: 136–143
CrossRef Pubmed Google scholar
[91]
Chen Q, Li Y, Tao T, Bie X, Lu F, Lu Z. Development and application of a sensitive, rapid, and reliable immunomagnetic separation-PCR detection method for Cronobacter spp. Journal of Dairy Science, 2017, 100(2): 961–969
CrossRef Pubmed Google scholar
[92]
Seo K H, Brackett R E. Rapid, specific detection of Enterobacter sakazakii in infant formula using a real-time PCR assay. Journal of Food Protection, 2005, 68(1): 59–63
CrossRef Pubmed Google scholar
[93]
Lehner A, Riedel K, Rattei T, Ruepp A, Frishman D, Breeuwer P, Diep B, Eberl L, Stephan R. Molecular characterization of the alpha-glucosidase activity in Enterobacter sakazakii reveals the presence of a putative gene cluster for palatinose metabolism. Systematic and Applied Microbiology, 2006, 29(8): 609–625
CrossRef Pubmed Google scholar
[94]
Hassan A A, Akineden O, Kress C, Estuningsih S, Schneider E, Usleber E. Characterization of the gene encoding the 16S rRNA of Enterobacter sakazakii and development of a species-specific PCR method. International Journal of Food Microbiology, 2007, 116(2): 214–220
CrossRef Pubmed Google scholar
[95]
Derzelle S, Dilasser F, Maladen V, Soudrie N, Leclercq A, Lombard B, Lafarge V. Comparison of three chromogenic media and evaluation of two molecular-based identification systems for the detection of Enterobacter sakazakii from environmental samples from infant formulae factories. Journal of Food Protection, 2007, 70(7): 1678–1684
CrossRef Pubmed Google scholar
[96]
Mullane N, O’Gaora P, Nally J E, Iversen C, Whyte P, Wall P G, Fanning S. Molecular analysis of the Enterobacter sakazakii O-antigen gene locus. Applied and Environmental Microbiology, 2008, 74(12): 3783–3794
CrossRef Pubmed Google scholar
[97]
Jaradat Z W, Ababneh Q O, Saadoun I M, Samara N A, Rashdan A M. Isolation of Cronobacter spp. (formerly Enterobacter sakazakii) from infant food, herbs and environmental samples and the subsequent identification and confirmation of the isolates using biochemical, chromogenic assays, PCR and 16S rRNA sequencing. BMC Microbiology, 2009, 9(1): 225
CrossRef Pubmed Google scholar
[98]
Jarvis K G, Grim C J, Franco A A, Gopinath G, Sathyamoorthy V, Hu L, Sadowski J A, Lee C S, Tall B D. Molecular characterization of Cronobacter lipopolysaccharide O-antigen gene clusters and development of serotype-specific PCR assays. Applied and Environmental Microbiology, 2011, 77(12): 4017–4026
CrossRef Pubmed Google scholar
[99]
Huang C H, Chang M T, Huang L. Use of novel species-specific PCR primers targeted to DNA gyrase subunit B (gyrB) gene for species identification of the Cronobacter sakazakii and Cronobacter dublinensis. Molecular and Cellular Probes, 2013, 27(1): 15–18
CrossRef Pubmed Google scholar
[100]
Dong X, Wu Q, Zhang J, Mo S, Kou X, Guo W. Sequencing of the grxB gene of Cronobacter spp. and the development of a PCR assay for its identification. Foodborne Pathogens and Disease, 2013, 10(8): 711–717
CrossRef Pubmed Google scholar
[101]
Zimmermann J, Schmidt H, Loessner M J, Weiss A. Development of a rapid detection system for opportunistic pathogenic Cronobacter spp. in powdered milk products. Food Microbiology, 2014, 42: 19–25
CrossRef Pubmed Google scholar
[102]
Tan H Q, Cai J S, Tan H F, Lin F, Cheng J P. Establishment of quantitative real-time PCR targeting the MMS gene of Cronobacter spp. based on TaqMan-MGB probe. Chinese Journal of Food Hygiene, 2014, 1: 40–43
[103]
Hu S, Yu Y, Li R, Wu X, Xiao X, Wu H. Rapid detection of Cronobacter sakazakii by real-time PCR based on the cgcA gene and TaqMan probe with internal amplification control. Canadian Journal of Microbiology, 2016, 62(3): 191–200
CrossRef Pubmed Google scholar
[104]
Li Y, Chen Q, Jiang H, Jiao Y, Lu F, Bie X, Lu Z. Novel development of a qPCR assay based on the rpoB gene for rapid detection of Cronobacter spp. Current Microbiology, 2016, 72(4): 436–443
CrossRef Pubmed Google scholar
[105]
Liu Y, Gao Q, Zhang X, Hou Y, Yang J, Huang X. PCR and oligonucleotide array for detection of Enterobacter sakazakii in infant formula. Molecular and Cellular Probes, 2006, 20(1): 11–17
CrossRef Pubmed Google scholar
[106]
Chen Q, Tao T, Bie X, Lu Y, Lu F, Zhai L, Lu Z. Mining for sensitive and reliable species-specific primers for PCR for detection of Cronobacter sakazakii by a bioinformatics approach. Journal of Dairy Science, 2015, 98(8): 5091–5101
CrossRef Pubmed Google scholar
[107]
Ye Y, Ling N, Han Y, Cao X, Wu Q. Detection of Cronobacter on gluB gene and differentiation of four Cronobacter species by polymerase chain reaction-restriction fragment length polymorphism typing. Journal of Food Safety, 2015, 35(3): 422–427
CrossRef Google scholar
[108]
Xu W. Detecting Targets Without Thermal Cycling in Food: Isothermal Amplification and Hybridization In. Functional Nucleic Acids Detection in Food Safety: Theories and Applications. Singapore: Springer Singapore, 2016: 185–218
[109]
Liu X, Fang J, Zhang M, Wang X, Wang W, Gong Y, Xi X, Li M. Development of a loop-mediated isothermal amplification assay for detection of Cronobacter spp. (Enterobacter sakazakii). World Journal of Microbiology & Biotechnology, 2012, 28(3): 1013–1020
CrossRef Pubmed Google scholar
[110]
Zhou W, Zhang W, Liu L, Liu D, Yong-Bo L, Tian H, Zhang Y, Zhang Z S. Detection of Cronobacter sakazakii in infant formula powder by helicase-dependent isothermal DNA amplification assay. Food Science, 2014, 27(2): 155–162
[111]
Wang Q, Zhao X J, Wang Z W, Liu L, Wei Y X, Han X, Zeng J, Liao W J. Identification of Cronobacter species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with an optimized analysis method. Journal of Microbiological Methods, 2017, 139: 172–180
CrossRef Pubmed Google scholar
[112]
Kim H S, Kim Y J, Chon J W, Kim D H, Yim J H, Kim H, Seo K H. Two-stage label-free aptasensing platform for rapid detection of Cronobacter sakazakii in powdered infant formula. Sensors and Actuators B: Chemical, 2017, 239: 94–99
CrossRef Google scholar
[113]
Muytjens H L, Roelofs-Willemse H, Jaspar G H. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. Journal of Clinical Microbiology, 1988, 26(4): 743–746
Pubmed
[114]
Xu F, Li P, Ming X, Yang D, Xu H, Wu X, Shah N P, Wei H. Detection of Cronobacter species in powdered infant formula by probe-magnetic separation PCR. Journal of Dairy Science, 2014, 97(10): 6067–6075
CrossRef Pubmed Google scholar
[115]
Guo B, Liu Z, Ren Q, Mo B, Liu X, Yu M, Gong G, Liu J, Chen W, Wang Y, Li N, Ren L, Su Y. Safe Production of Dairy In: Guo Benheng. Safety of Milk and Dairy Products.Beijing, China: Chemical Industry Press. 2015: 150–278
[116]
Barbosa-Cánovas G, Bermúdez-Aguirre D. Pasteurization of milk with pulsed electric fields In. Improving the Safety and Quality of Milk, 2010, 400–419
[117]
Guerrero-Beltrán J A, Barbosa-Cánovas G V, Swanson B G. High hydrostatic pressure processing of fruit and vegetable products. Food Reviews International, 2005, 21(4): 411–425
CrossRef Google scholar
[118]
Arroyo C, Cebrián G, Mackey B M, Condón S, Pagán R. Environmental factors influencing the inactivation of Cronobacter sakazakii by high hydrostatic pressure. International Journal of Food Microbiology, 2011, 147(2): 134–143
CrossRef Pubmed Google scholar
[119]
Lee J W, Oh S H, Byun E B, Kim J H, Kim J H, Woon J H, Byun M W. Inactivation of Enterobacter sakazakii of dehydrated infant formula by gamma-irradiation. Radiation Physics and Chemistry, 2007, 76(11–12): 1858–1861
CrossRef Google scholar
[120]
Osaili T M, Shaker R R, Abu Al-Hasan A S, Ayyash M M, Martin E M. Inactivation of Enterobacter sakazakii in infant milk formula by gamma irradiation: determination of D10-value. Journal of Food Science, 2007, 72(3): M85–M88
CrossRef Pubmed Google scholar
[121]
Al-Nabulsi A A, Osaili T M, Al-Holy M A, Shaker R R, Ayyash M M, Olaimat A N, Holley R A. Influence of desiccation on the sensitivity of Cronobacter spp. to lactoferrin or nisin in broth and powdered infant formula. International Journal of Food Microbiology, 2009, 136(2): 221–226
CrossRef Pubmed Google scholar
[122]
Pina-Perez M C, Rodrigo D, Martinez-Lopez A. Bacteriostatic effect of cocoa powder rich in polyphenols to control Cronobacter sakazakii proliferation on infant milk formula. Science and Technology Against Microbial Pathogens, 2011, 85–88

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (2017M611478) and Fundamental Research Funds for the Central Universities.

Compliance with ethics guidelines

Qiming Chen, Yang Zhu, Zhen Qin, Yongjun Qiu, and Liming Zhao declare that they have no conflicts of interest or financial conflicts to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2018. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(322 KB)

Accesses

Citations

Detail

Sections
Recommended

/