Endemicity of H9N2 and H5N1 avian influenza viruses in poultry in China poses a serious threat to poultry industry and public health
Jiao HU, Xiufan LIU
Endemicity of H9N2 and H5N1 avian influenza viruses in poultry in China poses a serious threat to poultry industry and public health
The H9N2 and H5N1 avian influenza viruses (AIVs) have been circulating in poultry in China and become endemic since 1998 and 2004, respectively. Currently, they are prevalent in poultry throughout China. This endemicity makes them actively involved in the emergence of the novel lineages of other subtypes of influenza viruses, such as the well-known viruses of the highly pathogenic avian influenza (HPAI) H5N2 and the 2013 novel H7N7, H7N9 and H10N8 subtypes, thereby threatening both the poultry industry and public health. Here, we will review briefly the prevalence and evolution, pathogenicity, transmission, and disease control of these two subtypes and also discuss the possibility of emergence of potentially virulent and highly transmissible AIVs to humans.
avian influenza virus / H9N2 / H5N1 / novel viruses / public health
[1] |
Stallknecht D E, Shane S M. Host range of avian influenza virus in free-living birds.Veterinary Research Communications, 1988, 12(2–3): 125–141
CrossRef
Google scholar
|
[2] |
Webster R G, Bean W J, Gorman O T, Chambers T M, Kawaoka Y. Evolution and ecology of influenza A viruses.Microbiological Reviews, 1992, 56(1): 152–179
|
[3] |
Krauss S, Walker D, Pryor S P, Niles L, Chenghong L, Hinshaw V S, Webster R G. Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne and Zoonotic Diseases, 2004, 4(3): 177–189
CrossRef
Google scholar
|
[4] |
Olsen B, Munster V J, Wallensten A, Waldenstrom J, Osterhaus A D, Fouchier R A. Global patterns of influenza a virus in wild birds.Science, 2006, 312(5772): 384–388
CrossRef
Google scholar
|
[5] |
Spackman E. The ecology of avian influenza virus in wild birds: what does this mean for poultry? Poultry Science, 2009, 88(4): 847–850
CrossRef
Google scholar
|
[6] |
Krauss S, Stallknecht D E, Negovetich N J, Niles L J, Webby R J, Webster R G. Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological ‘hot spot’ for influenza viruses. Proceedings of the Royal Society B: Biological Sciences, 1699, 2010(277): 3373–3379
|
[7] |
Horimoto T, Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nature Reviews Microbiology, 2005, 3(8): 591–600
CrossRef
Google scholar
|
[8] |
Kuiken T, Rimmelzwaan G, van Riel D, van Amerongen G, Baars M, Fouchier R, Osterhaus A. Avian H5N1 influenza in cats. Science, 2004, 306(5694): 241
CrossRef
Google scholar
|
[9] |
Quirk M. Zoo tigers succumb to avian influenza.Lancet Infectious Diseases, 2004, 4(12): 716
CrossRef
Google scholar
|
[10] |
Songserm T, Amonsin A, Jam-on R, Sae-Heng N, Pariyothorn N, Payungporn S, Theamboonlers A, Chutinimitkul S, Thanawongnuwech R, Poovorawan Y. Fatal avian influenza A H5N1 in a dog.Emerging Infectious Diseases, 2006, 12(11): 1744–1747
CrossRef
Google scholar
|
[11] |
Thanawongnuwech R, Amonsin A, Tantilertcharoen R, Damrongwatanapokin S, Theamboonlers A, Payungporn S, Nanthapornphiphat K, Ratanamungklanon S, Tunak E, Songserm T, Vivatthanavanich V, Lekdumrongsak T, Kesdangsakonwut S, Tunhikorn S, Poovorawan Y. Probable tiger-to-tiger transmission of avian influenza H5N1. Emerging Infectious Diseases, 2005, 11(5): 699–701
CrossRef
Google scholar
|
[12] |
Palese P. The genes of influenza virus.Cell, 1977, 10(1): 1–10
CrossRef
Google scholar
|
[13] |
Lamb R A, Lai C J. Sequence of interrupted and uninterrupted mRNAs and cloned DNA coding for the two overlapping nonstructural proteins of influenza virus. Cell, 1980, 21(2): 475–485
CrossRef
Google scholar
|
[14] |
Lamb R A, Lai C J, Choppin P W. Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(7): 4170–4174
CrossRef
Google scholar
|
[15] |
Wise H M, Foeglein A, Sun J, Dalton R M, Patel S, Howard W, Anderson E C, Barclay W S, Digard P. A complicated message: identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. Journal of Virology, 2009, 83(16): 8021–8031
CrossRef
Google scholar
|
[16] |
Chen W, Calvo P A, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P, Henklein P, Bennink J R, Yewdell J W. A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 2001, 7(12): 1306–1312
CrossRef
Google scholar
|
[17] |
Jagger B W, Wise H M, Kash J C, Walters K A, Wills N M, Xiao Y L, Dunfee R L, Schwartzman L M, Ozinsky A, Bell G L, Dalton R M, Lo A, Efstathiou S, Atkins J F, Firth A E, Taubenberger J K, Digard P. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science, 2012, 337(6091): 199–204
CrossRef
Google scholar
|
[18] |
Wise H M, Hutchinson E C, Jagger B W, Stuart A D, Kang Z H, Robb N, Schwartzman L M, Kash J C, Fodor E, Firth A E, Gog J R, Taubenberger J K, Digard P. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathogens, 2012, 8(11): e1002998
CrossRef
Google scholar
|
[19] |
Selman M, Dankar S K, Forbes N E, Jia J J, Brown E G. Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing.Emerging Microbes & Infections, 2012, 1(11): e42
CrossRef
Google scholar
|
[20] |
Muramoto Y, Noda T, Kawakami E, Akkina R, Kawaoka Y. Identification of novel influenza A virus proteins translated from PA mRNA. Journal of Virology, 2013, 87(5): 2455–2462
CrossRef
Google scholar
|
[21] |
Vasin A V, Temkina O A, Egorov V V, Klotchenko S A, Plotnikova M A, Kiselev O I. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins.Virus Research, 2014, 185: 53–63
CrossRef
Google scholar
|
[22] |
Yamayoshi S, Watanabe M, Goto H, Kawaoka Y. Identification of a novel viral protein expressed from the PB2 segment of influenza A virus.Journal of Virology, 2016, 90(1): 444–456
CrossRef
Google scholar
|
[23] |
Chen B L, Zhang Z J, Chen W B. Isolation and preliminary serological characterization of type A influenza viruses from chickens. Journal of Veterinary Medicine, 1994, 22(2): 3–5
|
[24] |
Xu X, Subbarao K, Cox N J, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong.Virology, 1999, 261(1): 15–19
CrossRef
Google scholar
|
[25] |
Zhou J, Wang D, Gao R, Zhao B, Song J, Qi X, Zhang Y, Shi Y, Yang L, Zhu W, Bai T, Qin K, Lan Y, Zou S, Guo J, Dong J, Dong L, Wei H, Li X, Lu J, Liu L, Zhao X, Huang W, Wen L, Bo H, Xin L, Chen Y, Xu C, Pei Y, Yang Y, Zhang X, Wang S, Feng Z, Han J, Yang W, Gao G F, Wu G, Li D, Wang Y, Shu Y. Biological features of novel avian influenza A (H7N9) virus.Nature, 2013, 499(7459): 500–503
CrossRef
Google scholar
|
[26] |
Tan K X, Jacob S A, Chan K G, Lee L H. An overview of the characteristics of the novel avian influenza A H7N9 virus in humans.Frontiers in Microbiology, 2015, 6: 140
CrossRef
Google scholar
|
[27] |
Bi Y, Zhang Z, Liu W, Yin Y, Hong J, Li X, Wang H, Wong G, Chen J, Li Y, Ru W, Gao R, Liu D, Liu Y, Zhou B, Gao G F, Shi W, Lei F. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015. Scientific Reports, 2015, 5: 12986
CrossRef
Google scholar
|
[28] |
Xu L, Bao L, Yuan J, Li F, Lv Q, Deng W, Xu Y, Yao Y, Yu P, Chen H, Yuen K Y, Qin C. Antigenicity and transmissibility of a novel clade 2.3.2.1 avian influenza H5N1 virus.Journal of General Virology, 2013, 94(12): 2616–2626
CrossRef
Google scholar
|
[29] |
Garten R J, Davis C T, Russell C A, Shu B, Lindstrom S, Balish A, Sessions W M, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith C B, Emery S L, Hillman M J, Rivailler P, Smagala J, de Graaf M, Burke D F, Fouchier R A, Pappas C, Alpuche-Aranda C M, Lopez-Gatell H, Olivera H, Lopez I, Myers C A, Faix D, Blair P J, Yu C, Keene K M, Dotson P D Jr, Boxrud D, Sambol A R, Abid S H, St George K, Bannerman T, Moore A L, Stringer D J, Blevins P, Demmler-Harrison G J, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara H F, Belongia E A, Clark P A, Beatrice S T, Donis R, Katz J, Finelli L, Bridges C B, Shaw M, Jernigan D B, Uyeki T M, Smith D J, Klimov A I, Cox N J. Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans. Science, 2009, 325(5937): 197–201
CrossRef
Google scholar
|
[30] |
Lee A J, Das S R, Wang W, Fitzgerald T, Pickett B E, Aevermann B D, Topham D J, Falsey A R, Scheuermann R H. Diversifying selection analysis predicts antigenic evolution of 2009 pandemic H1N1 influenza A virus in humans.Journal of Virology, 2015, 89(10): 5427–5440
CrossRef
Google scholar
|
[31] |
Cui L, Liu D, Shi W, Pan J, Qi X, Li X, Guo X, Zhou M, Li W, Li J, Haywood J, Xiao H, Yu X, Pu X, Wu Y, Yu H, Zhao K, Zhu Y, Wu B, Jin T, Shi Z, Tang F, Zhu F, Sun Q, Wu L, Yang R, Yan J, Lei F, Zhu B, Liu W, Ma J, Wang H, Gao G F. Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nature Communications, 2014, 5: 3142
CrossRef
Google scholar
|
[32] |
Su S, Bi Y H, Wong G, Gray G C, Gao G F, Li S. Epidemiology, evolution, and recent outbreaks of avian influenza virus in China.Journal of Virology, 2015, 89(17): 8671–8676
CrossRef
Google scholar
|
[33] |
Shi W, Li W, Li X, Haywood J, Ma J, Gao G F, Liu D. Phylogenetics of varied subtypes of avian influenza viruses in China: potential threat to humans. Protein & Cell, 2014, 5(4): 253–257
CrossRef
Google scholar
|
[34] |
Guo Y J, Krauss S, Senne D A, Mo I P, Lo K S, Xiong X P, Norwood M, Shortridge K F, Webster R G, Guan Y. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia.Virology, 2000, 267(2): 279–288
CrossRef
Google scholar
|
[35] |
Li K S, Xu K M, Peiris J S, Poon L L, Yu K Z, Yuen K Y, Shortridge K F, Webster R G, Guan Y. Characterization of H9 subtype influenza viruses from the ducks of southern China: a candidate for the next influenza pandemic in humans?Journal of Virology, 2003, 77(12): 6988–6994
CrossRef
Google scholar
|
[36] |
Liu H, Liu X, Cheng J, Peng D, Jia L, Huang Y. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996–2001.Avian Diseases, 2003, 47(1): 116–127
CrossRef
Google scholar
|
[37] |
Xu K M, Li K S, Smith G J, Li J W, Tai H, Zhang J X, Webster R G, Peiris J S, Chen H, Guan Y. Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China, 2000 to 2005. Journal of Virology, 2007, 81(6): 2635–2645
CrossRef
Google scholar
|
[38] |
Lu J H, Liu X F, Shao W X, Liu Y L, Wei D P, Liu H Q. Phylogenetic analysis of eight genes of H9N2 subtype influenza virus: a mainland China strain possessing early isolates’ genes that have been circulating.Virus Genes, 2005, 31(2): 163–169
CrossRef
Google scholar
|
[39] |
Zhang P, Tang Y, Liu X, Peng D, Liu W, Liu H, Lu S, Liu X. Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China during a 5 year period (1998–2002). Journal of General Virology, 2008, 89(12): 3102–3112
CrossRef
Google scholar
|
[40] |
Gu M, Chen H, Li Q, Huang J, Zhao M, Gu X, Jiang K, Wang X, Peng D, Liu X. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China. Veterinary Microbiology, 2014, 174(3–4): 309–315
CrossRef
Google scholar
|
[41] |
Wang Q, Ju L, Liu P, Zhou J, Lv X, Li L, Shen H, Su H, Jiang L, Jiang Q. Serological and virological surveillance of avian influenza A virus H9N2 subtype in humans and poultry in Shanghai, China, between 2008 and 2010.Zoonoses and Public Health, 2015, 62(2): 131–140
CrossRef
Google scholar
|
[42] |
Wang N, Ruan Z, Wan Y, Wang B, Zhang S H, Ge X Y. Identification of a novel strain of influenza A (H9N2) virus in chicken. Virologica Sinica, 2015, 30(4): 309–312
CrossRef
Google scholar
|
[43] |
Bi Y, Lu L, Li J, Yin Y, Zhang Y, Gao H, Qin Z, Zeshan B, Liu J, Sun L, Liu W. Novel genetic reassortants in H9N2 influenza A viruses and their diverse pathogenicity to mice.Virology Journal, 2011, 8(1): 505
CrossRef
Google scholar
|
[44] |
Pu J, Wang S, Yin Y, Zhang G, Carter R A, Wang J, Xu G, Sun H, Wang M, Wen C, Wei Y, Wang D, Zhu B, Lemmon G, Jiao Y, Duan S, Wang Q, Du Q, Sun M, Bao J, Sun Y, Zhao J, Zhang H, Wu G, Liu J, Webster R G. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(2): 548–553
CrossRef
Google scholar
|
[45] |
Li Q, Zhou L, Zhou M, Chen Z, Li F, Wu H, Xiang N, Chen E, Tang F, Wang D, Meng L, Hong Z, Tu W, Cao Y, Li L, Ding F, Liu B, Wang M, Xie R, Gao R, Li X, Bai T, Zou S, He J, Hu J, Xu Y, Chai C, Wang S, Gao Y, Jin L, Zhang Y, Luo H, Yu H, He J, Li Q, Wang X, Gao L, Pang X, Liu G, Yan Y, Yuan H, Shu Y, Yang W, Wang Y, Wu F, Uyeki T M, Feng Z. Epidemiology of human infections with avian influenza A(H7N9) virus in China.New England Journal of Medicine, 2014, 370(6): 520–532
CrossRef
Google scholar
|
[46] |
Wu A, Su C, Wang D, Peng Y, Liu M, Hua S, Li T, Gao G F, Tang H, Chen J, Liu X, Shu Y, Peng D, Jiang T. Sequential reassortments underlie diverse influenza H7N9 genotypes in China. Cell Host & Microbe, 2013, 14(4): 446–452
CrossRef
Google scholar
|
[47] |
Liu M, Li X, Yuan H, Zhou J, Wu J, Bo H, Xia W, Xiong Y, Yang L, Gao R, Guo J, Huang W, Zhang Y, Zhao X, Zou X, Chen T, Wang D, Li Q, Wang S W, Chen S, Hu M, Ni X, Gong T, Shi Y, Li J, Zhou J, Cai J, Xiao Z, Zhang W, Sun J, Li D, Wu G, Feng Z, Wang Y, Chen H, Shu Y. Genetic diversity of avian influenza A (H10N8) virus in live poultry markets and its association with human infections in China. Scientific Reports, 2015, 5: 7632
CrossRef
Google scholar
|
[48] |
Alexander D J, Brown I H. History of highly pathogenic avian influenza.Revue Scientifique et Technique, 2009, 28(1): 19–38
|
[49] |
Guo Y, Xu X, Wan X. Genetic characterization of an avian influenza A (H5N1) virus isolated from a sick goose in China.Chinese Journal of Experimental and Clinical Virology, 1998, 12(4): 322–325 (in Chinese)
|
[50] |
Chin P S, Hoffmann E, Webby R, Webster R G, Guan Y, Peiris M, Shortridge K F. Molecular evolution of H6 influenza viruses from poultry in Southeastern China: prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97 (H5N1)-like genes in poultry. Journal of Virology, 2002, 76(2): 507–516
CrossRef
Google scholar
|
[51] |
Hu J, Hu Z, Song Q, Gu M, Liu X, Wang X, Hu S, Chen C, Liu H, Liu W, Chen S, Peng D, Liu X. The PA-gene-mediated lethal dissemination and excessive innate immune response contribute to the high virulence of H5N1 avian influenza virus in mice. Journal of Virology, 2013, 87(5): 2660–2672
CrossRef
Google scholar
|
[52] |
Li C, Yu K, Tian G, Yu D, Liu L, Jing B, Ping J, Chen H. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology, 2005, 340(1): 70–83
CrossRef
Google scholar
|
[53] |
Smith G J D, Donis R O. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014. Influenza and Other Respiratory Viruses, 2015, 9(5): 271–276
CrossRef
Google scholar
|
[54] |
Gu M, Zhao G, Zhao K, Zhong L, Huang J, Wan H, Wang X, Liu W, Liu H, Peng D, Liu X. Novel variants of clade 2.3.4 highly pathogenic avian influenza A(H5N1) viruses, China.Emerging Infectious Diseases, 2013, 19(12): 2021–2024
CrossRef
Google scholar
|
[55] |
Guan Y, Smith G J. The emergence and diversification of panzootic H5N1 influenza viruses. Virus Research, 2013, 178(1): 35–43
CrossRef
Google scholar
|
[56] |
Chen J, Fang F, Yang Z, Liu X, Zhang H, Zhang Z, Zhang X, Chen Z. Characterization of highly pathogenic H5N1 avian influenza viruses isolated from poultry markets in central China. Virus Research, 2009, 146(1–2): 19–28
CrossRef
Google scholar
|
[57] |
Guan Y, Peiris J S, Lipatov A S, Ellis T M, Dyrting K C, Krauss S, Zhang L J, Webster R G, Shortridge K F. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(13): 8950–8955
CrossRef
Google scholar
|
[58] |
Li K S, Guan Y, Wang J, Smith G J, Xu K M, Duan L, Rahardjo A P, Puthavathana P, Buranathai C, Nguyen T D, Estoepangestie A T, Chaisingh A, Auewarakul P, Long H T, Hanh N T, Webby R J, Poon L L, Chen H, Shortridge K F, Yuen K Y, Webster R G, Peiris J S. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature, 2004, 430(6996): 209–213
CrossRef
Google scholar
|
[59] |
Chen H, Smith G J, Li K S, Wang J, Fan X H, Rayner J M, Vijaykrishna D, Zhang J X, Zhang L J, Guo C T, Cheung C L, Xu K M, Duan L, Huang K, Qin K, Leung Y H, Wu W L, Lu H R, Chen Y, Xia N S, Naipospos T S, Yuen K Y, Hassan S S, Bahri S, Nguyen T D, Webster R G, Peiris J S, Guan Y. Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(8): 2845–2850
CrossRef
Google scholar
|
[60] |
Sonnberg S, Webby R J, Webster R G. Natural history of highly pathogenic avian influenza H5N1. Virus Research, 2013, 178(1): 63–77
CrossRef
Google scholar
|
[61] |
Neumann G, Green M A, Macken C A. Evolution of highly pathogenic avian H5N1 influenza viruses and the emergence of dominant variants.Journal of General Virology, 2010, 91(8): 1984–1995
CrossRef
Google scholar
|
[62] |
Gu M, Liu W, Cao Y, Peng D, Wang X, Wan H, Zhao G, Xu Q, Zhang W, Song Q, Li Y, Liu X. Novel reassortant highly pathogenic avian influenza (H5N5) viruses in domestic ducks, China. Emerging Infectious Diseases, 2011, 17(6): 1060–1063
CrossRef
Google scholar
|
[63] |
Zhao G, Gu X, Lu X, Pan J, Duan Z, Zhao K, Gu M, Liu Q, He L, Chen J, Ge S, Wang Y, Chen S, Wang X, Peng D, Wan H, Liu X. Novel reassortant highly pathogenic H5N2 avian influenza viruses in poultry in China.PLoS ONE, 2012, 7(9): e46183
CrossRef
Google scholar
|
[64] |
Hu J, Zhao K, Liu X, Wang X, Chen Z, Liu X. Two highly pathogenic avian influenza H5N1 viruses of clade 2.3.2.1 with similar genetic background but with different pathogenicity in mice and ducks. Transboundary and Emerging Diseases, 2013, 60(2): 127–139
CrossRef
Google scholar
|
[65] |
de Vries E, Guo H, Dai M, Rottier P J, van Kuppeveld F J, de Haan C A. Rapid emergence of highly pathogenic avian influenza subtypes from a subtype H5N1 hemagglutinin variant. Emerging Infectious Diseases, 2015, 21(5): 842–846
CrossRef
Google scholar
|
[66] |
Zhang P, Tang Y, Liu X, Liu W, Zhang X, Liu H, Peng D, Gao S, Wu Y, Zhang L, Lu S, Liu X. A novel genotype H9N2 influenza virus possessing human H5N1 internal genomes has been circulating in poultry in eastern China since 1998. Journal of Virology, 2009, 83(17): 8428–8438
CrossRef
Google scholar
|
[67] |
Gu M, Huang J, Chen Y, Chen J, Wang X, Liu X, Liu X. Genome sequence of a natural reassortant H5N2 avian influenza virus from domestic mallard ducks in eastern China. Journal of Virology, 2012, 86(22): 12463–12464
CrossRef
Google scholar
|
[68] |
Fan S, Zhou L, Wu D, Gao X, Pei E, Wang T, Gao Y, Xia X. A novel highly pathogenic H5N8 avian influenza virus isolated from a wild duck in China. Influenza and Other Respiratory Viruses, 2014, 8(6): 646–653
CrossRef
Google scholar
|
[69] |
Wu H, Peng X, Xu L, Jin C, Cheng L, Lu X, Xie T, Yao H, Wu N. Novel reassortant influenza A (H5N8) viruses in domestic ducks, eastern China. Emerging Infectious Diseases, 2014, 20(8): 1315–1318
CrossRef
Google scholar
|
[70] |
Bi Y, Mei K, Shi W, Liu D, Yu X, Gao Z, Zhao L, Gao G F, Chen J, Chen Q. Two novel reassortants of avian influenza A (H5N6) virus in China.Journal of General Virology, 2015, 96(5): 975–981
CrossRef
Google scholar
|
[71] |
Homme P J, Easterday B C. Avian influenza virus infections. I. Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian Diseases, 1970, 14(1): 66–74
CrossRef
Google scholar
|
[72] |
Kawaoka Y, Chambers T M, Sladen W L, Gwebster R. Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology, 1988, 163(1): 247–250
CrossRef
Google scholar
|
[73] |
Alexander D J. A review of avian influenza in different bird species. Veterinary Microbiology, 2000, 74(1–2): 3–13
CrossRef
Google scholar
|
[74] |
Arafa A S, Hagag N M, Yehia N, Zanaty A M, Naguib M M, Nasef S A. Effect of cocirculation of highly pathogenic avian influenza H5N1 subtype with low pathogenic H9N2 subtype on the spread of infections. Avian Diseases, 2012, 56(4 s1): 849–857
CrossRef
Google scholar
|
[75] |
Butt K M, Smith G J, Chen H, Zhang L J, Leung Y H, Xu K M, Lim W, Webster R G, Yuen K Y, Peiris J S, Guan Y. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. Journal of Clinical Microbiology, 2005, 43(11): 5760–5767
CrossRef
Google scholar
|
[76] |
Cong Y L, Pu J, Liu Q F, Wang S, Zhang G Z, Zhang X L, Fan W X, Brown E G, Liu J H. Antigenic and genetic characterization of H9N2 swine influenza viruses in China. Journal of General Virology, 2007, 88(7): 2035–2041
CrossRef
Google scholar
|
[77] |
Cong Y L, Wang C F, Yan C M, Peng J S, Jiang Z L, Liu J H. Swine infection with H9N2 influenza viruses in China in 2004.Virus Genes, 2008, 36(3): 461–469
CrossRef
Google scholar
|
[78] |
Lin Y P, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, Guan Y, Krauss S, Shortridge K, Webster R, Cox N, Hay A. Avian-to-human transmission of H9N2 subtype influenza A viruses: Relationship between H9N2 and H5N1 human isolates. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(17): 9654–9658
CrossRef
Google scholar
|
[79] |
Peiris J S M, Guan Y, Markwell D, Ghose P, Webster R G, Shortridge K F. Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment? Journal of Virology, 2001, 75(20): 9679–9686
CrossRef
Google scholar
|
[80] |
Peiris M, Yuen K Y, Leung C W, Chan K H, Ip P L S, Lai R W M, Orr W K, Shortridge K F. Human infection with influenza H9N2. Lancet, 1999, 354(9182): 916–917
CrossRef
Google scholar
|
[81] |
Huang Y W, Li X D, Zhang H, Chen B Z, Jiang Y L, Yang L, Zhu W F, Hu S X, Zhou S Y, Tang Y L, Xiang X Y, Li F C, Li W C, Gao L D. Human infection with an avian influenza A (H9N2) virus in the middle region of China.Journal of Medical Virology, 2015, 87(10): 1641–1648
CrossRef
Google scholar
|
[82] |
Saito T, Lim W, Suzuki T, Suzuki Y, Kida H, Nishimura S I, Tashiro M. Characterization of a human H9N2 influenza virus isolated in Hong Kong.Vaccine, 2001, 20(1–2): 125–133
CrossRef
Google scholar
|
[83] |
Shi W F, Gibbs M J, Zhang Y Z, Zhang Z, Zhao X M, Jin X, Zhu C D, Yang M F, Yang N N, Cui Y J, Ji L. Genetic analysis of four porcine avian influenza viruses isolated from Shandong, China. Archives of Virology, 2008, 153(1): 211–217
CrossRef
Google scholar
|
[84] |
Xu C T, Fan W X, Wei R, Zhao H K. Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2) virus. Microbes and Infection, 2004, 6(10): 919–925
CrossRef
Google scholar
|
[85] |
Yu H, Zhou Y J, Li G X, Ma J H, Yan L P, Wang B, Yang F R, Huang M, Tong G Z. Genetic diversity of H9N2 influenza viruses from pigs in China: a potential threat to human health? Veterinary Microbiology, 2011, 149(1–2): 254–261
CrossRef
Google scholar
|
[86] |
Cheng V C, Chan J F, Wen X, Wu W L, Que T L, Chen H, Chan K H, Yuen K Y. Infection of immunocompromised patients by avian H9N2 influenza A virus.Journal of Infection, 2011, 62(5): 394–399
CrossRef
Google scholar
|
[87] |
Kim J A, Cho S H, Kim H S, Seo S H. H9N2 influenza viruses isolated from poultry in Korean live bird markets continuously evolve and cause the severe clinical signs in layers.Veterinary Microbiology, 2006, 118(3–4): 169–176
CrossRef
Google scholar
|
[88] |
Sun Y, Pu J, Jiang Z, Guan T, Xia Y, Xu Q, Liu L, Ma B, Tian F, Brown E G, Liu J. Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008.Veterinary Microbiology, 2010, 146(3–4): 215–225
CrossRef
Google scholar
|
[89] |
Liu J H, Okazaki K, Shi W M, Wu Q M, Mweene A S, Kida H. Phylogenetic analysis of neuraminidase gene of H9N2 influenza viruses prevalent in chickens in China during 1995–2002. Virus Genes, 2003, 27(2): 197–202
CrossRef
Google scholar
|
[90] |
Aamir U B, Wernery U, Ilyushina N, Webster R G. Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003.Virology, 2007, 361(1): 45–55
CrossRef
Google scholar
|
[91] |
Wu R, Sui Z W, Zhang H B, Chen Q J, Liang W W, Yang K L, Xiong Z L, Liu Z W, Chen Z, Xu D P. Characterization of a pathogenic H9N2 influenza A virus isolated from central China in 2007. Archives of Virology, 2008, 153(8): 1549–1555
CrossRef
Google scholar
|
[92] |
Deng G, Bi J, Kong F, Li X, Xu Q, Dong J, Zhang M, Zhao L, Luan Z, Lv N, Qiao J. Acute respiratory distress syndrome induced by H9N2 virus in mice.Archives of Virology, 2010, 155(2): 187–195
CrossRef
Google scholar
|
[93] |
Liu L, Zi L, Zhou J, Zhu Y, Dong J, Zhao X, Guo J, Shu Y. Pathogenesis and immunogenicity of an avian H9N2 influenza virus isolated from human. Biomedical and Environmental Sciences, 2011, 24(5): 530–536
|
[94] |
Li X, Qi W, He J, Ning Z, Hu Y, Tian J, Jiao P, Xu C, Chen J, Richt J, Ma W, Liao M. Molecular basis of efficient replication and pathogenicity of H9N2 avian influenza viruses in mice. PLoS ONE, 2012, 7(6): e40118
CrossRef
Google scholar
|
[95] |
Lin Z Q, Xu C T, Liu B, Ji Y H, Fu Y G, Guo J H, Zhu Q Y. Analysis of the phylogeny of Chinese H9N2 avian influenza viruses and their pathogenicity in mice.Archives of Virology, 2014, 159(10): 2575–2586
CrossRef
Google scholar
|
[96] |
Li Y, Shan Y F, Chi Y, Wen T, Han X D. Acute lung injury induced by H9N2 virus in mice. Chinese Medical Journal, 2014, 127(20): 3576–3580
|
[97] |
Mok C K, Yen H L, Yu M Y, Yuen K M, Sia S F, Chan M C, Qin G, Tu W W, Peiris J S. Amino acid residues 253 and 591 of the PB2 protein of avian influenza virus A H9N2 contribute to mammalian pathogenesis.Journal of Virology, 2011, 85(18): 9641–9645
CrossRef
Google scholar
|
[98] |
Wang J, Sun Y, Xu Q, Tan Y, Pu J, Yang H, Brown E G, Liu J. Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence. PLoS ONE, 2012, 7(7): e40752
CrossRef
Google scholar
|
[99] |
Liu Q T, Huang J Q, Chen Y X, Chen H Z, Li Q H, He L, Hao X L, Liu J J, Gu M, Hu J, Wang X Q, Hu S L, Liu X W, Liu X F. Virulence Determinants in the PB2 Gene of a Mouse-Adapted H9N2 Virus.Journal of Virology, 2015, 89(1): 877–882
CrossRef
Google scholar
|
[100] |
Sun Y, Tan Y, Wei K, Sun H, Shi Y, Pu J, Yang H, Gao G F, Yin Y, Feng W, Perez D R, Liu J. Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. Journal of Virology, 2013, 87(5): 2963–2968
CrossRef
Google scholar
|
[101] |
Zhang K, Zhang Z, Yu Z, Li L, Cheng K, Wang T, Huang G, Yang S, Zhao Y, Feng N, Fu J, Qin C, Gao Y, Xia X. Domestic cats and dogs are susceptible to H9N2 avian influenza virus. Virus Research, 2013, 175(1): 52–57
CrossRef
Google scholar
|
[102] |
Zhou P, Wang L, Huang S, Fu C, He H, Hong M, Su S, Li S. Beagle dogs have low susceptibility to BJ94-like H9N2 avian influenza virus. Infection, Genetics and Evolution, 2015, 31: 216–220
CrossRef
Google scholar
|
[103] |
Wan H, Sorrell E M, Song H, Hossain M J, Ramirez-Nieto G, Monne I, Stevens J, Cattoli G, Capua I, Chen L M, Donis R O, Busch J, Paulson J C, Brockwell C, Webby R, Blanco J, Al-Natour M Q, Perez D R. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS ONE, 2008, 3(8): e2923
CrossRef
Google scholar
|
[104] |
Gao R, Bai T, Li X, Xiong Y, Huang Y, Pan M, Zhang Y, Bo H, Zou S, Shu Y. The comparison of pathology in ferrets infected by H9N2 avian influenza viruses with different genomic features.Virology, 2016, 488: 149–155
CrossRef
Google scholar
|
[105] |
Sun Y, Bi Y, Pu J, Hu Y, Wang J, Gao H, Liu L, Xu Q, Tan Y, Liu M, Guo X, Yang H, Liu J. Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses. PLoS ONE, 2010, 5(11): e15537
CrossRef
Google scholar
|
[106] |
Zhang K, Xu W, Zhang Z, Wang T, Sang X, Cheng K, Yu Z, Zheng X, Wang H, Zhao Y, Huang G, Yang S, Qin C, Gao Y, Xia X. Experimental infection of non-human primates with avian influenza virus (H9N2). Archives of Virology, 2013, 158(10): 2127–2134
CrossRef
Google scholar
|
[107] |
Bonfante F, Patrono L V, Aiello R, Beato M S, Terregino C, Capua I. Susceptibility and intra-species transmission of the H9N2 G1 prototype lineage virus in Japanese quail and turkeys.Veterinary Microbiology, 2013, 165(1–2): 177–183
CrossRef
Google scholar
|
[108] |
Nili H, Mohammadi A, Habibi H, Firouzi S. Pathogenesis of H9N2 virus in Chukar partridges. Avian Pathology, 2013, 42(3): 230–234
CrossRef
Google scholar
|
[109] |
Iqbal M, Yaqub T, Mukhtar N, Shabbir M Z, McCauley J W. Infectivity and transmissibility of H9N2 avian influenza virus in chickens and wild terrestrial birds.Veterinary Research, 2013, 44(1): 100
CrossRef
Google scholar
|
[110] |
Zhang C, Xuan Y, Shan H, Yang H, Wang J, Wang K, Li G, Qiao J. Avian influenza virus H9N2 infections in farmed minks.Virology Journal, 2015, 12(1): 180
CrossRef
Google scholar
|
[111] |
Li P, Chen C, Han K, Zhang F, Zhu Y, Ling Z, Zhang X, Jiang S, Xie Z. Molecular characterization of H9N2 influenza virus isolated from mink and its pathogenesis in mink.Veterinary Microbiology, 2015, 176(1–2): 88–96
CrossRef
Google scholar
|
[112] |
Perkins L E, Swayne D E. Pathobiology of A/chicken/Hong Kong/220/97 (H5N1) avian influenza virus in seven gallinaceous species.Veterinary Pathology, 2001, 38(2): 149–164
CrossRef
Google scholar
|
[113] |
Alexander D J, Allan W H, Parsons D G, Parsons G. The pathogenicity of four avian influenza viruses for fowls, turkeys and ducks. Research in Veterinary Science, 1978, 24(2): 242–247
|
[114] |
Alexander D J, Parsons G, Manvell R J. Experimental assessment of the pathogenicity of eight avian influenza A viruses of H5 subtype for chickens, turkeys, ducks and quail. Avian Pathology, 1986, 15(4): 647–662
CrossRef
Google scholar
|
[115] |
Wood G W, Parsons G, Alexander D J. Replication of influenza A viruses of high and low pathogenicity for chickens at different sites in chickens and ducks following intranasal inoculation. Avian Pathology, 1995, 24(3): 545–551
CrossRef
Google scholar
|
[116] |
Ellis T M, Barry Bousfield R, Bissett L A, Dyrting K C, Luk G S M, Tsim S T, Sturm-ramirez K, Webster R G, Guan Y, Peiris J S M. Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002.Avian Pathology, 2004, 33(5): 492–505
CrossRef
Google scholar
|
[117] |
Sturm-Ramirez K M, Ellis T, Bousfield B, Bissett L, Dyrting K, Rehg J E, Poon L, Guan Y, Peiris M, Webster R G. Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks.Journal of Virology, 2004, 78(9): 4892–4901
CrossRef
Google scholar
|
[118] |
Swayne D E. Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds. Avian Diseases, 2007, 51(s1): 242–249
CrossRef
Google scholar
|
[119] |
Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang X W, Zhang X L, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao G F. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science, 2005, 309(5738): 1206
CrossRef
Google scholar
|
[120] |
Hu J, Hu Z, Mo Y, Wu Q, Cui Z, Duan Z, Huang J, Chen H, Chen Y, Gu M, Wang X, Hu S, Liu H, Liu W, Liu X, Liu X. The PA and HA gene-mediated high viral load and intense innate immune response in the brain contribute to the high pathogenicity of H5N1 avian influenza virus in mallard ducks.Journal of Virology, 2013, 87(20): 11063–11075
CrossRef
Google scholar
|
[121] |
Kajihara M, Sakoda Y, Soda K, Minari K, Okamatsu M, Takada A, Kida H. The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1) are responsible for pathogenicity in ducks.Virology Journal, 2013, 10(1): 45
CrossRef
Google scholar
|
[122] |
Song J, Feng H, Xu J, Zhao D, Shi J, Li Y, Deng G, Jiang Y, Li X, Zhu P, Guan Y, Bu Z, Kawaoka Y, Chen H. The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks. Journal of Virology, 2011, 85(5): 2180–2188
CrossRef
Google scholar
|
[123] |
Hulse-Post D J, Franks J, Boyd K, Salomon R, Hoffmann E, Yen H L, Webby R J, Walker D, Nguyen T D, Webster R G. Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks.Journal of Virology, 2007, 81(16): 8515–8524
CrossRef
Google scholar
|
[124] |
Bröjer C van Amerongen G, van de Bildt M, van Run P, Osterhaus A, Gavier-Widen D, Kuiken T. Pathogenicity and tissue tropism of currently circulating highly pathogenic avian influenza A virus (H5N1; clade 2.3.2) in tufted ducks (Aythya fuligula). Veterinary Microbiology, 2015, 180(3–4): 273–280
CrossRef
Google scholar
|
[125] |
Leigh Perkins L E, Swayne D E. Pathogenicity of a Hong Kong-origin H5N1 highly pathogenic avian influenza virus for emus, geese, ducks, and pigeons.Avian Diseases, 2002, 46(1): 53–63
CrossRef
Google scholar
|
[126] |
Brown J D, Stallknecht D E, Beck J R, Suarez D L, Swayne D E. Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses.Emerging Infectious Diseases, 2006, 12(11): 1663–1670
CrossRef
Google scholar
|
[127] |
Brown J D, Stallknecht D E, Swayne D E. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage. Emerging Infectious Diseases, 2008, 14(1): 136–142
CrossRef
Google scholar
|
[128] |
Pasick J, Berhane Y, Embury-Hyatt C, Copps J, Kehler H, Handel K, Babiuk S, Hooper-McGrevy K, Li Y, Le Q M, Phuong S L. Susceptibility of Canada Geese (Branta canadensis) to highly pathogenic avian influenza virus (H5N1).Emerging Infectious Diseases, 2007, 13(12): 1821–1827
CrossRef
Google scholar
|
[129] |
Pantin-Jackwood M J, Swayne D E. Pathobiology of Asian highly pathogenic avian influenza H5N1 virus infections in ducks. Avian Diseases, 2007, 51(s1): 250–259
CrossRef
Google scholar
|
[130] |
Keawcharoen J, van Riel D, van Amerongen G, Bestebroer T, Beyer W E, van Lavieren R, Osterhaus A D M E, Fouchier R A M, Kuiken T. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5NI). Emerging Infectious Diseases, 2008, 14(4): 600–607
CrossRef
Google scholar
|
[131] |
Zhao K, Gu M, Zhong L, Duan Z, Zhang Y, Zhu Y, Zhao G, Zhao M, Chen Z, Hu S, Liu W, Liu X, Peng D, Liu X. Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Veterinary Microbiology, 2013, 163(3–4): 351–357
CrossRef
Google scholar
|
[132] |
Yu Z, Gao X, Wang T, Li Y, Li Y, Xu Y, Chu D, Sun H, Wu C, Li S, Wang H, Li Y, Xia Z, Lin W, Qian J, Chen H, Xia X, Gao Y. Fatal H5N6 Avian Influenza Virus Infection in a Domestic Cat and Wild Birds in China. Scientific Reports, 2015, 5: 10704
CrossRef
Google scholar
|
[133] |
Wu H, Lu R, Peng X, Xu L, Cheng L, Lu X, Jin C, Xie T, Yao H, Wu N. Novel reassortant highly pathogenic H5N6 avian influenza viruses in poultry in China. Infection, Genetics and Evolution, 2015, 31: 64–67
CrossRef
Google scholar
|
[134] |
Shen H, Wu B, Chen Y, Bi Y, Xie Q. Influenza A (H5N6) virus reassortant, Southern China, 2014. Emerging Infectious Diseases, 2015, 21(7): 1261–1262
CrossRef
Google scholar
|
[135] |
Li J, Gu M, Liu D, Liu B, Jiang K, Zhong L, Liu K, Sun W, Hu J, Wang X, Hu S, Liu X. Phylogenetic and biological characterization of three K1203 (H5N8)-like avian influenza A virus reassortants in China in 2014. Archives of Virology, 2016, 161(2):289–302
|
[136] |
Li Y, Shi J, Zhong G, Deng G, Tian G, Ge J, Zeng X, Song J, Zhao D, Liu L, Jiang Y, Guan Y, Bu Z, Chen H. Continued evolution of H5N1 influenza viruses in wild birds, domestic poultry, and humans in China from 2004 to 2009. Journal of Virology, 2010, 84(17): 8389–8397
CrossRef
Google scholar
|
[137] |
Pantin-Jackwood M, Swayne D E, Smith D, Shepherd E. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks. Veterinary Research, 2013, 44: 62
|
[138] |
Kwon Y K, Thomas C, Swayne D E. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl.Veterinary Pathology, 2010, 47(3): 495–506
CrossRef
Google scholar
|
[139] |
Uno Y, Usui T, Soda K, Fujimoto Y, Takeuchi T, Ito H, Ito T, Yamaguchi T. The pathogenicity and host immune response associated with H5N1 highly pathogenic avian influenza virus in quail.Journal of Veterinary Medical Science, 2013, 75(4): 451–457
CrossRef
Google scholar
|
[140] |
Isoda N, Sakoda Y, Kishida N, Bai G R, Matsuda K, Umemura T, Kida H. Pathogenicity of a highly pathogenic avian influenza virus, A/chicken/Yamaguchi/7/04 (H5N1) in different species of birds and mammals. Archives of Virology, 2006, 151(7): 1267–1279
CrossRef
Google scholar
|
[141] |
Śmietanka K, Minta Z, Reichert M, Olszewska M, Wyrostek K, Jozwiak M, van den Berg T. Experimental infection of juvenile domestic and Canada geese with two different clades of H5N1 high pathogenicity avian influenza virus.Veterinary Microbiology, 2013, 163(3–4): 235–241
CrossRef
Google scholar
|
[142] |
Songserm T, Amonsin A, Jam-On R, Sae-Heng N, Meemak N, Pariyothorn N, Payungporn S, Theamboonlers A, Poovorawan Y. Avian influenza H5N1 in naturally infected domestic cat. Emerging Infectious Diseases, 2006, 12(4): 681–683
CrossRef
Google scholar
|
[143] |
Kwon Y K, Lipatov A S, Swayne D E. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus.Veterinary Pathology, 2009, 46(1): 138–141
CrossRef
Google scholar
|
[144] |
Li X, Jin M, Yu Z, Zhang A, Chen H, Qian P. Pathogenicity of a goose isolate of highly pathogenic H5N1 influenza a virus for chickens, mice, and pigs. Acta Virologica. English Ed., 2008, 52(1): 41–46
|
[145] |
Śmietanka K, Minta Z, Wyrostek K, Jozwiak M, Olszewska M, Domanska-Blicharz K, Reichert M, Pikula A, Habyarimana A, van den Berg T. Susceptibility of pigeons to glade 1 and 2.2 high pathogenicity avian influenza H5N1 virus. Avian Diseases, 2011, 55(1): 106–112
CrossRef
Google scholar
|
[146] |
Wu H, Peng X, Xu L, Jin C, Cheng L, Lu X, Xie T, Yao H, Wu N. Characterization of a novel highly pathogenic H5N2 avian influenza virus isolated from a duck in eastern China. Archives of Virology, 2014, 159(12): 3377–3383
CrossRef
Google scholar
|
[147] |
Feng H X, Liu Y Y, Song Q Q, Ling Z S, Zhang F X, Zhu Y L, Jiang S J, Xie Z J. Interspecies transmission of canine influenza virus H5N2 to cats and chickens by close contact with experimentally infected dogs.Veterinary Microbiology, 2014, 170(3–4): 414–417
|
[148] |
Pulit-Penaloza J A, Sun X, Creager H M, Zeng H, Belser J A, Maines T R, Tumpey T M. Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice.Journal of Virology, 2015, 89(20): 10286–10293
CrossRef
Google scholar
|
[149] |
Song Q Q, Zhang F X, Liu J J, Ling Z S, Zhu Y L, Jiang S J, Xie Z J. Dog to dog transmission of a novel influenza virus (H5N2) isolated from a canine. Veterinary Microbiology, 2013, 161(3–4): 331–333
CrossRef
Google scholar
|
[150] |
Wang D, Tang G, Huang Y, Yu C, Li S, Zhuang L, Fu L, Wang S, Li N, Li X, Yang L, Lan Y, Bai T, Shu Y. A returning migrant worker with avian influenza A (H7N9) virus infection in Guizhou, China: a case report. Journal of Medical Case Reports, 2015, 9(1): 109
CrossRef
Google scholar
|
[151] |
Li X, Fu Y, Yang J, Guo J, He J, Weng S, Jia Y, Liu B, Zhu Q, Chen H. Genetic and biological characterization of two novel reassortant H5N6 swine influenza viruses in mice and chickens. Infection, Genetics and Evolution, 2015, 36: 462–466
CrossRef
Google scholar
|
[152] |
Pan M, Gao R, Lv Q, Huang S, Zhou Z, Yang L, Li X, Zhao X, Zou X, Tong W, Mao S, Zou S, Bo H, Zhu X, Liu L, Yuan H, Zhang M, Wang D, Li Z, Zhao W, Ma M, Li Y, Li T, Yang H, Xu J, Zhou L, Zhou X, Tang W, Song Y, Chen T, Bai T, Zhou J, Wu G, Li D, Feng Z, Gao G F, Wang Y, He S, Shu Y. Human infection with a novel highly pathogenic avian influenza A (H5N6) virus: Virological and clinical findings. Journal of Infection, 2016, 72(1):52–59
|
[153] |
Bae Y J, Lee S B, Min K C, Mo J S, Jeon E O, Koo B S, Kwon H I, Choi Y K, Kim J J, Kim J N, Mo I P. Pathological evaluation of natural cases of a highly pathogenic avian influenza virus, subtype H5N8, in broiler breeders and commercial layers in South Korea. Avian Diseases, 2015, 59(1): 175–182
CrossRef
Google scholar
|
[154] |
Kang H M, Lee E K, Song B M, Jeong J, Choi J G, Jeong J, Moon O K, Yoon H, Cho Y, Kang Y M, Lee H S, Lee Y J. Novel reassortant influenza A (H5N8) viruses among inoculated domestic and wild ducks, South Korea, 2014. Emerging Infectious Diseases, 2015, 21(2): 298–304
CrossRef
Google scholar
|
[155] |
Carnaccini S, Crossley B, Breitmeyer R, Charlton B R, Bland M, Fowler K, De La Torre F, Torchetti M K, Wong S S, Wilson D, Jones A, Senties-Cue C G. Diagnosis and control of a LPAI H5N8 outbreak in a Japanese quail (Coturnix coturnix japonica) commercial flock in the central valley of California. Avian Diseases, 2015, 59(2): 344–348
CrossRef
Google scholar
|
[156] |
Richard M, Herfst S, van den Brand J M A, Lexmond P, Bestebroer T M, Rimmelzwaan G F, Koopmans M, Kuiken T, Fouchier R A M. Low virulence and lack of airborne transmission of the Dutch highly pathogenic avian influenza virus H5N8 in Ferrets. PLoS ONE, 2015, 10(6): e0129827
CrossRef
Google scholar
|
[157] |
Kim Y I, Pascua P N, Kwon H I, Lim G J, Kim E H, Yoon S W, Park S J, Kim S M, Choi E J, Si Y J, Lee O J, Shim W S, Kim S W, Mo I P, Bae Y, Lim Y T, Sung M H, Kim C J, Webby R J, Webster R G, Choi Y K. Pathobiological features of a novel, highly pathogenic avian influenza A (H5N8) virus. Emerging Microbes Infect, 2014, 3(10): e75
CrossRef
Google scholar
|
[158] |
Song B M, Kang H M, Lee E K, Jung J, Kang Y, Lee H S, Lee Y J. Pathogenicity of H5N8 virus in chickens from Korea in 2014. Journal of Veterinary Science, 2015, 16(2): 237–240
CrossRef
Google scholar
|
[159] |
Shi H, Ashraf S, Gao S, Lu J, Liu X. Evaluation of transmission route and replication efficiency of H9N2 avian influenza virus.Avian Diseases, 2010, 54(1): 22–27
CrossRef
Google scholar
|
[160] |
Zhong L, Wang X, Li Q, Liu D, Chen H, Zhao M, Gu X, He L, Liu X, Gu M, Peng D, Liu X. Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens. Journal of Virology, 2014, 88(17): 9568–9578
CrossRef
Google scholar
|
[161] |
Li X, Shi J, Guo J, Deng G, Zhang Q, Wang J, He X, Wang K, Chen J, Li Y, Fan J, Kong H, Gu C, Guan Y, Suzuki Y, Kawaoka Y, Liu L, Jiang Y, Tian G, Bu Z, Chen H. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses. PLoS Pathogens, 2014, 10(11): e1004508
CrossRef
Google scholar
|
[162] |
Wu R, Sui Z, Liu Z, Liang W, Yang K, Xiong Z, Xu D. Transmission of avian H9N2 influenza viruses in a murine model. Veterinary Microbiology, 2010, 142(3–4): 211–216
CrossRef
Google scholar
|
[163] |
Lv J, Wei B, Yang Y, Yao M, Cai Y, Gao Y, Xia X, Zhao X, Liu Z, Li X, Wang H, Yang H, Roesler U, Miao Z, Chai T. Experimental transmission in guinea pigs of H9N2 avian influenza viruses from indoor air of chicken houses. Virus Research, 2012, 170(1–2): 102–108
CrossRef
Google scholar
|
[164] |
Fusaro A, Monne I, Salviato A, Valastro V, Schivo A, Amarin N M, Gonzalez C, Ismail M M, Al-Ankari A R, Al-Blowi M H, Khan O A, Maken Ali A S, Hedayati A, Garcia Garcia J, Ziay G M, Shoushtari A, Al Qahtani K N, Capua I, Holmes E C, Cattoli G. Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications. Journal of Virology, 2011, 85(16): 8413–8421
CrossRef
Google scholar
|
[165] |
Guan Y, Shortridge K F, Krauss S, Webster R G. Molecular characterization of H9N2 influenza viruses: Were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(16): 9363–9367
CrossRef
Google scholar
|
[166] |
Kimble J B, Sorrell E, Shao H, Martin P L, Perez D R. Compatibility of H9N2 avian influenza surface genes and 2009 pandemic H1N1 internal genes for transmission in the ferret model. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12084–12088
CrossRef
Google scholar
|
[167] |
Gao Y, Zhang Y, Shinya K, Deng G, Jiang Y, Li Z, Guan Y, Tian G, Li Y, Shi J, Liu L, Zeng X, Bu Z, Xia X, Kawaoka Y, Chen H. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathogens, 2009, 5(12): e1000709
CrossRef
Google scholar
|
[168] |
Zhang Y, Zhang Q, Kong H, Jiang Y, Gao Y, Deng G, Shi J, Tian G, Liu L, Liu J, Guan Y, Bu Z, Chen H. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet.Science, 2013, 340(6139): 1459–1463
CrossRef
Google scholar
|
[169] |
Herfst S, Schrauwen E J A, Linster M, Chutinimitkul S, de Wit E, Munster V J, Sorrell E M, Bestebroer T M, Burke D F, Smith D J, Rimmelzwaan G F, Osterhaus A D M E, Fouchier R A M. Airborne transmission of influenza A/H5N1 virus between ferrets.Science, 2012, 336(6088): 1534–1541
CrossRef
Google scholar
|
[170] |
Imai M, Watanabe T, Hatta M, Das S C, Ozawa M, Shinya K, Zhong G X, Hanson A, Katsura H, Watanabe S, Li C J, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher E A, Neumann G, Kawaoka Y. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 2012, 486(7403): 420
|
[171] |
Li Q, Wang X, Gu M, Zhu J, Hao X, Gao Z, Sun Z, Hu J, Hu S, Liu X. Novel H5 clade 2.3.4.6 viruses with both α-2,3 and α-2,6 receptor binding properties may pose a pandemic threat. Veterinary Research, 2014, 45(1): 127
CrossRef
Google scholar
|
[172] |
Yu M, Qi W, Huang Z, Zhang K, Ye J, Liu R, Wang H, Ma Y, Liao M, Ning Z. Expression profile and histological distribution of IFITM1 and IFITM3 during H9N2 avian influenza virus infection in BALB/c mice.Medical Microbiology and Immunology, 2015, 204(4): 505–514
CrossRef
Google scholar
|
[173] |
Bi J, Deng G, Dong J, Kong F, Li X, Xu Q, Zhang M, Zhao L, Qiao J. Phylogenetic and molecular characterization of H9N2 influenza isolates from chickens in Northern China from 2007–2009. PLoS ONE, 2010, 5(9): e13063
CrossRef
Google scholar
|
[174] |
Chen F, Yan Z Q, Liu J, Ji J, Chang S, Liu D, Qin J P, Ma J Y, Bi Y Z, Xie Q M. Phylogenetic analysis of hemagglutinin genes of 40 H9N2 subtype avian influenza viruses isolated from poultry in China from 2010 to 2011. Virus Genes, 2012, 45(1): 69–75
CrossRef
Google scholar
|
[175] |
Sun Y, Pu J, Fan L, Sun H, Wang J, Zhang Y, Liu L, Liu J. Evaluation of the protective efficacy of a commercial vaccine against different antigenic groups of H9N2 influenza viruses in chickens. Veterinary Microbiology, 2012, 156(1–2): 193–199
CrossRef
Google scholar
|
[176] |
Swayne D E. Impact of vaccines and vaccination on global control of avian influenza. Avian Diseases, 2012, 56(4 s1): 818–828
CrossRef
Google scholar
|
[177] |
Smith G J, Fan X H, Wang J, Li K S, Qin K, Zhang J X, Vijaykrishna D, Cheung C L, Huang K, Rayner J M, Peiris J S, Chen H, Webster R G, Guan Y. Emergence and predominance of an H5N1 influenza variant in China.Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(45): 16936–16941
CrossRef
Google scholar
|
[178] |
Hu X, Liu D, Wang M, Yang L, Zhu Q, Li L, Gao G F. Clade 2.3.2 avian influenza virus (H5N1), Qinghai Lake region, China, 2009–2010. Emerging Infectious Diseases, 2011, 17(3): 560–562
CrossRef
Google scholar
|
[179] |
Qin T, Yin Y, Yu Q, Huang L, Wang X, Lin J, Yang Q. CpG oligodeoxynucleotides facilitate delivery of whole inactivated H9N2 influenza virus via transepithelial dendrites of dendritic cells in nasal mucosa. Journal of Virology, 2015, 89(11): 5904–5918
CrossRef
Google scholar
|
/
〈 | 〉 |