Initiation of Setaria as a model plant

Xianmin DIAO, James SCHNABLE, Jeffrey L. BENNETZEN, Jiayang LI

PDF(96 KB)
PDF(96 KB)
Front. Agr. Sci. Eng. ›› 2014, Vol. 1 ›› Issue (1) : 16-20. DOI: 10.15302/J-FASE-2014011
REVIEW
REVIEW

Initiation of Setaria as a model plant

Author information +
History +

Abstract

Model organisms such as Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have proven essential for efficient scientific discovery and development of new methods. With the diversity of plant lineages, some important processes such as C4 photosynthesis are not found in either Arabidopsis or rice, so new model species are needed. Due to their small diploid genomes, short life cycles, self-pollination, small adult statures and prolific seed production, domesticated foxtail millet (Setaria italica) and its wild ancestor, green foxtail (S. viridis), have recently been proposed as novel model species for functional genomics of the Panicoideae, especially for study of C4 photosynthesis. This review outlines the development of these species as model organisms, and discusses current challenges and future potential of a Setaria model.

Keywords

Setaria / foxtail millet / C4 photosynthesis / model organism

Cite this article

Download citation ▾
Xianmin DIAO, James SCHNABLE, Jeffrey L. BENNETZEN, Jiayang LI. Initiation of Setaria as a model plant. Front. Agr. Sci. Eng., 2014, 1(1): 16‒20 https://doi.org/10.15302/J-FASE-2014011

References

[1]
Sage R F. The evolution of C4 photosynthesis. New Phytologist, 2004, 161(2): 341–370
CrossRef Google scholar
[2]
Rominger J M. Taxonomy of Setaria (Gramineae) in North America. In: Illinois Biol Monogr, volume 29. Edited by Horsfall WR, Delevoryas T, De Moss RD, Kruidenier FJ, and Taylor AB. Urbana: University of Illinois Press; 1962, 100–108
[3]
Zhao M, Zhi H, Doust A N, Li W, Wang Y, Li H, Jia G, Wang Y, Zhang N, Diao X. Novel genomes and genome constitutions identified by GISH and 5S rDNA and knotted1 genomic sequences in the genus Setaria. BMC Genomics, 2013, 14(1): 244
CrossRef Pubmed Google scholar
[4]
Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012, 30(6): 555–561
CrossRef Pubmed Google scholar
[5]
Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q, Guo Y, Huang T, Zhang L, Lu T, Feng Q, Hao H, Liu H, Lu P, Zhang N, Li Y, Guo E, Wang S, Wang S, Liu J, Zhang W, Chen G, Zhang B, Li W, Wang Y, Li H, Zhao B, Li J, Diao X, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013, 45(8): 957–961
CrossRef Pubmed Google scholar
[6]
Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence-driven grass model system. Plant Physiology, 2009, 149(1): 137–141
CrossRef Pubmed Google scholar
[7]
Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell, 2010, 22(8): 2537–2544
CrossRef Pubmed Google scholar
[8]
Li P, Brutnell T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of Experimental Botany, 2011, 62(9): 3031–3037
CrossRef Pubmed Google scholar
[9]
Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology, 2013, 33(3): 328–343
CrossRef Pubmed Google scholar
[10]
Wang Y H, Upadhyaya H D, Burrell A M, Sahraeian S M, Klein R R, Klein P E. Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor. G3 (Bethesda), 2013, 3(5): 783–93
CrossRef Google scholar
[11]
von Caemmerer S, Quick W P, Furbank R T. The development of C₄ rice: current progress and future challenges. Science, 2012, 336(6089): 1671–1672
CrossRef Pubmed Google scholar
[12]
Karki S, Rizal G, Quick W P. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway. Rice, 2013, 6(1): 28
CrossRef Pubmed Google scholar
[13]
Gu S. Relationship between foxtail millet growth and environmental factors, In Gu S. ed., Foxtail Millet Cultivation and Production in China, Beijing, Chinese Agricultural Press, 1987, 63–71
[14]
Li Y. Breeding for foxtail millet drought tolerant cultivars (in Chinese). In Li Y ed., Foxtail Millet Breeding, Beijing, Chinese Agricultural Press, 1997, 421–446
[15]
Zhu X, Song Y, Zhao Z, Shi Y, Liu Y, Li Y, Wang T. Methods for identification of drought tolerance at germination period of foxtail millet by osmotic stress. Journal of Plant Genetic Resources, 2008, 9: 62–67
[16]
Zhang J, Liu T, Fu J, Zhu Y, Jia J, Zheng J, Zhao Y, Zhang Y, Wang G. Construction and application of EST library from Setaria italica in response to dehydration stress. Genomics, 2007, 90(1): 121–131
CrossRef Pubmed Google scholar
[17]
Lata C, Sahu P P, Prasad M. Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochemical and Biophysical Research Communications, 2010, 393(4): 720–727
CrossRef Pubmed Google scholar
[18]
Yi F, Xie S, Liu Y, Qi X, Yu J. Genome-wide characterization of microRNA in foxtail millet (Setaria italica). BMC Plant Biology, 2013, 13(1): 212
CrossRef Pubmed Google scholar
[19]
Qi X, Xie S, Liu Y, Yi F, Yu J. Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Molecular Biology, 2013, 83(4-5): 459–473
CrossRef Pubmed Google scholar
[20]
Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30(6): 549–554
CrossRef Pubmed Google scholar
[21]
Bai H, Cao Y, Quan J, Dong L, Li Z, Zhu Y, Zhu L, Dong Z, Li D. Identifying the genome-wide sequence variations and developing new molecular markers for genetics research by re-sequencing a Landrace cultivar of foxtail millet. PLoS ONE, 2013, 8(9): e73514
CrossRef Pubmed Google scholar
[22]
Zhang S, Tang C, Zhao Q, Li J, Yang L, Qie L, Fan X, Li L, Zhang N, Zhao M, Liu X, Chai Y, Zhang X, Wang H, Li Y, Li W, Zhi H, Jia G, Diao X. Development and characterization of highly polymorphic SSR (Simple Sequence Repeat) markers through genome-wide microsatellite variants analysis in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics, 2014, 15: 78
CrossRef Pubmed Google scholar
[23]
Muthamilarasan M, Venkata Suresh B, Pandey G, Kumari K, Parida S K, Prasad M. Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Research, 2014, 21(1): 41–52
CrossRef Pubmed Google scholar
[24]
Jia G, Shi S, Wang C, Niu Z, Chai Y, Zhi H, Diao X. Molecular diversity and population structure of Chinese green foxtail [Setaria viridis (L.) Beauv.] revealed by microsatellite analysis. Journal of Experimental Botany, 2013, 64(12): 3645–3656
CrossRef Pubmed Google scholar
[25]
Wang C F, Jia G Q, Zhi H, Niu Z G, Chai Y, Li W, Wang Y F, Li H Q, Lu P, Zhao B H, Diao X M. Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3 (Bethesda), 2012, 2(7): 769–777.
[26]
Diao X, Li W, Zhi H, Jia G, Ge Y, Chai Y, Li J. Construction of an EMS mutation library for foxtail millet functional genomics. The first international Setaria genetics conference abstracts, Beijing, 2014, 56
[27]
Bennetzen J, Chaluvadi S, Feng L, Wang H. Setaria genome structure and evolution. The first international Setaria genetics conference abstracts, Beijing, 2014, 6
[28]
Martins P K, Dias B B A, Ribeiro A P, Kobayashi A K, Molinari H B C. Setaria viridis: a tool for functional gene analysis in sugancane. The first international Setaria genetics conference abstracts, Beijing, 2014, 19
[29]
Zhi H, Jia G, Niu Z, Liu X, Ge Y, Chai Y, Diao X. Construction of an RIL population and segment introgression lines via interspecific cross between Setaria italica and S. viridis. The first international Setaria genetics conference abstracts, Beijing, 2014, 50

Acknowledgements

This work was supported by Fundamental Research Funds of CAAS (2014ZL002), National High Technology Research and Development Program of China (2013AA102603), the National Natural Science Foundation of China (31171560, 31301328) and China Agricultural Research System (CARS07-12.5-A02).ƒ

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(96 KB)

Accesses

Citations

Detail

Sections
Recommended

/