Feb 2025, Volume 44 Issue 4
    

  • Select all
  • Yin Feng, Li-qun He

    The increasing incidence of cardiovascular disease (CVD) is a significant global health concern, affecting millions of individuals each year. Accurate diagnosis of acute CVD poses a formidable challenge, as misdiagnosis can significantly decrease patient survival rates. Traditional biomarkers have played a vital role in the diagnosis and prognosis of CVDs, but they can be influenced by various factors, such as age, sex, and renal function. Soluble ST2 (sST2) is a novel biomarker that is closely associated with different CVDs. Its low reference change value makes it suitable for continuous measurement, unaffected by age, kidney function, and other confounding factors, facilitating risk stratification of CVDs. Furthermore, the combination of sST2 with other biomarkers can enhance diagnostic accuracy and prognostic value. This review aims to provide a comprehensive overview of sST2, focusing on its diagnostic and prognostic value as a myocardial marker for different types of CVDs and discussing the current limitations of sST2.

  • Yi-shan Guo, Ning Yang, Zhen Wang, Yu-miao Wei

    Neoatherosclerosis (NA) within stents has become an important clinical problem after coronary artery stent implantation. In-stent restenosis and in-stent thrombosis are the two major complications following coronary stent placement and seriously affect patient prognosis. As the common pathological basis of these two complications, NA plaques, unlike native atherosclerotic plaques, often grow around residual oxidized lipids and stent struts. The main components are foam cells formed by vascular smooth muscle cells (VSMCs) engulfing oxidized lipids at lipid residue sites. Current research mainly focuses on optical coherence tomography (OCT) and intravascular ultrasound (IVUS), but the specific pathogenesis of NA is still unclear. A thorough understanding of the pathogenesis and pathological features of NA provides a theoretical basis for clinical treatment. This article reviews the previous research of our research group and the current situation of domestic and foreign research.

  • Xiao-yan Chen, Sheng He, Zhen Tan, Feng Gao, Hui Jiang, Lu Chen, Li Yang, Yu-shan Liu, Si-yi He
    Objective

    The standardization of warfarin anticoagulant therapy is the key to lifelong treatment for patients after heart valve replacement. The present study explored the possible risk factors for anxiety and depression during the coronavirus disease 2019 (COVID-19) pandemic and analyzed the influence of psychological state on medication safety.

    Methods

    Eligible patients received a web-based questionnaire survey via the Wenjuanxing platform during outpatient visits. Depression was evaluated by the Self-Rating Depression Scale (SDS). Anxiety was evaluated by the Self-Rating Anxiety Scale (SAS). Medication adherence was evaluated by the Morisky scale.

    Results

    A total of 309 patients (aged 52.2±11.4 years) were included in the present study. The SDS score of all included patients was 36.9±9.4 points, of which 11 (3.6%) patients were diagnosed as having depression. The SAS score of all included patients was 43.1±9.3 points, of which 71 (23%) patients were diagnosed as having anxiety. Seven patients (2.3%) had both anxiety and depression. Logistic regression analysis revealed that only monthly income was an independent influencing factor for depression. Regarding anxiety, patients who underwent repeated operations had a 2.264-fold greater risk, and patients who received combination medication had a 2.140-fold greater risk. More bleeding events and coagulation disorders could be observed in patients with anxiety, depression or both. When anxiety occurred, patients showed worse medication adherence. However, depression had no significant effect on medication adherence.

    Conclusion

    During the COVID-19 pandemic, the detection rate of mental illnesses such as anxiety and depression was high, which seriously affected the medication safety of warfarin. Analysis of its influencing factors will provide a reference for further standardized regulation of warfarin anticoagulant therapy after valve replacement.

  • Jun-feng Zhang, Feng-qing Cai, Xiu-cai Zhang, Qing Ye
    Objective

    Inflammation is involved in the development and progression of nonalcoholic fatty liver disease (NAFLD). The monocyte to high-density lipoprotein cholesterol ratio (MHR) has emerged as a marker for various inflammation-related diseases. The aim of the present study was to investigate the association between the MHR and NAFLD in a population with childhood obesity.

    Methods

    Based on hepatic ultrasound, a total of 504 children with obesity (357 with NAFLD and 147 without NAFLD) were included in the study. The correlation between the MHR and NAFLD risk factors was assessed by Pearson’s and Spearman’s analyses. Multivariate stepwise logistic regression analyses were conducted to explore the association between the MHR and the risk of NAFLD.

    Results

    The MHR in patients with NAFLD was significantly greater than that in patients without NAFLD [0.52 (0.44–0.67) versus 0.44 (0.34–0.57), P<0.001]. Multivariate stepwise logistic regression analysis demonstrated that the MHR [odds ratio (OR): 1.033, 95% confidence interval (CI): 1.015–1.051; P<0.001] was an independent predictor of NAFLD in childhood obesity patients, as were age (OR: 1.205, 95% CI: 1.059–1.371; P=0.005], waist circumference [OR: 1.037, 95% CI: 1.008–1.067; P=0.012], and alanine transaminase [OR: 1.067, 95% CI: 1.045–1.089; P<0.001]. Additionally, MHR quartiles showed a significant positive association with the incidence of NAFLD after adjusting for potential confounding factors.

    Conclusion

    The present study showed that the MHR may serve as an available and useful indicator of NAFLD in individuals with childhood obesity.

  • Zuo-ling Xie, Chen-chen Wang, Xi Huang, Zheng Wang, Hai-yan Shangguan, Shao-hua Wang
    Objective

    The prevalence and the cluster characteristics of risk factors of stroke were assessed in a Chinese diabetic population.

    Methods

    Clinical data of 30 693 inpatients who were diagnosed with type 2 diabetes mellitus (T2DM) and admitted between 2013 and 2018 were retrospectively analyzed. The age-standardized prevalence of stroke was estimated using the 2010 Chinese population census data, and risk factors were analyzed by multiple imputation and regression.

    Results

    The crude and standardized prevalence rates of stroke in patients with T2DM were 34.4% and 21.5%, respectively, and 85.2% of the stroke patients had ischemic stroke. Nearly half of the patients who experienced stroke had clusters of more than 4 risk factors. Compared with no-risk-factor clustering, the risk of stroke significantly increased 3–4 times in the presence of more than 4 risk-factor clusters (P<0.001). Hypertension was the most common major risk factor for ischemic stroke [odds ratio (OR), 2.34; 95% confidence interval (CI), 2.18–2.50] and hemorrhagic stroke (OR, 3.68; 95% CI 2.95–4.59; P<0.001). Moreover, a 1-standard-deviation increase in fasting blood glucose (FBG) was significantly negatively correlated with ischemic stroke risk, and the same change in FBG was significantly associated with an 8% increased risk of hemorrhagic stroke.

    Conclusion

    The prevalence of stroke in patients with T2DM is rather high, and the clustering of risk factors is associated with the development of stroke in T2DM patients. Risk factors differ in different stroke subtypes. Identifying risk factors for a specific high-risk group is necessary.

  • Xiao-hui Yan, Yin-na Zhu, Yan-ting Zhu
    Objective

    Obesity-induced kidney injury contributes to the development of diabetic nephropathy (DN). Here, we identified the functions of ubiquitin-specific peptidase 19 (USP19) in HK-2 cells exposed to a combination of high glucose (HG) and free fatty acid (FFA) and determined its association with TGF-beta-activated kinase 1 (TAK1).

    Methods

    HK-2 cells were exposed to a combination of HG and FFA. USP19 mRNA expression was detected by quantitative RT-PCR (qRT-PCR), and protein analysis was performed by immunoblotting (IB). Cell growth was assessed by Cell Counting Kit-8 (CCK-8) viability and 5-ethynyl-2′-deoxyuridine (EdU) proliferation assays. Cell cycle distribution and apoptosis were detected by flow cytometry. The USP19/TAK1 interaction and ubiquitinated TAK1 levels were assayed by coimmunoprecipitation (Co-IP) assays and IB.

    Results

    In HG+FFA-challenged HK-2 cells, USP19 was highly expressed. USP19 knockdown attenuated HG+FFA-triggered growth inhibition and apoptosis promotion in HK-2 cells. Moreover, USP19 knockdown alleviated HG+FFA-mediated PTEN-induced putative kinase 1 (PINK1)/Parkin pathway inactivation and increased mitochondrial reactive oxygen species (ROS) generation in HK-2 cells. Mechanistically, USP19 stabilized the TAK1 protein through deubiquitination. Importantly, increased TAK1 expression reversed the USP19 knockdown-mediated phenotypic changes and PINK1/Parkin pathway activation in HG+FFA-challenged HK-2 cells.

    Conclusion

    The findings revealed that USP19 plays a crucial role in promoting HK-2 cell dysfunction induced by combined stimulation with HG and FFAs by stabilizing TAK1, providing a potential therapeutic strategy for combating DN.

  • Bo-lang Deng, Dong-xu Lin, Zhi-peng Li, Kang Li, Peng-yu Wei, Chang-cheng Luo, Meng-yang Zhang, Quan Zhou, Zheng-long Yang, Zhong Chen
    Objective

    Bladder outlet obstruction (BOO) results in significant fibrosis in the chronic stage and elevated bladder pressure. Piezo1 is a type of mechanosensitive (MS) channel that directly responds to mechanical stimuli. To identify new targets for intervention in the treatment of BOO-induced fibrosis, this study investigated the impact of high hydrostatic pressure (HHP) on Piezo1 activity and the progression of bladder fibrosis.

    Methods

    Immunofluorescence staining was conducted to assess the protein abundance of Piezo1 in fibroblasts from obstructed rat bladders. Bladder fibroblasts were cultured under normal atmospheric conditions (0 cmH2O) or exposed to HHP (50 cmH2O or 100 cmH2O). Agonists or inhibitors of Piezo1, YAP1, and ROCK1 were used to determine the underlying mechanism.

    Results

    The Piezo1 protein levels in fibroblasts from the obstructed bladder exhibited an elevation compared to the control group. HHP significantly promoted the expression of various pro-fibrotic factors and induced proliferation of fibroblasts. Additionally, the protein expression levels of Piezo1, YAP1, ROCK1 were elevated, and calcium influx was increased as the pressure increased. These effects were attenuated by the Piezo1 inhibitor Dooku1. The Piezo1 activator Yoda1 induced the expression of pro-fibrotic factors and the proliferation of fibroblasts, and elevated the protein levels of YAP1 and ROCK1 under normal atmospheric conditions in vitro. However, these effects could be partially inhibited by YAP1 or ROCK inhibitors.

    Conclusion

    The study suggests that HHP may exacerbate bladder fibrosis through activating Piezo1.

  • Liang Wang, Ping Wang, Bing Liu, Hui Zhang, Cheng-cheng Wei, Ming Xiong, Gang Luo, Miao Wang
    Objective

    This study aimed to investigate the role of the long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) in the epithelial-mesenchymal transition (EMT) of bladder cancer cells and the potential mechanisms.

    Methods

    Cell invasion, migration, and wound healing assays were conducted to assess the effects of MEG3 on the invasive and migratory capabilities of bladder cancer cells. The expression levels of E-cadherin were measured using Western blotting, RT-qPCR, and dual luciferase reporter assays. RNA immunoprecipitation and pull-down assays were performed to investigate the interactions between MEG3 and its downstream targets.

    Results

    MEG3 suppressed the invasion and migration of bladder cancer cells and modulated the transcription of E-cadherin. The binding of MEG3 to the zinc finger region of the transcription factor Snail prevented its ability to transcriptionally repress E-cadherin. Additionally, MEG3 suppressed the phosphorylation of extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and P38, thereby decreasing the expression of Snail and stimulating the expression of E-cadherin.

    Conclusion

    MEG3 plays a vital role in suppressing the EMT in bladder cancer cells, indicating its potential as a promising therapeutic target for the treatment of bladder cancer.

  • Ge Xiong, Wei Zheng, Li-hua Gong
    Objective

    The Vickers ligament is thought to hinder the growth of palmar ulnar radius by tethering the lunate to the radius, leading to Madelung deformity. The purpose of this study was to clarify the nature of the Vickers ligament and investigate its pathogenesis in Madelung deformities based on our observation of the Vickers ligament.

    Methods

    All 22 patients (33 wrists) with Madelung deformities treated surgically between 2018 and 2022 were included. The diagnosis was confirmed radiographically in all patients. The three-dimensional computed tomography (3D-CT) data of 16 patients (19 wrists) were available. Magnetic resonance imaging (MRI) data were available for 9 patients (14 wrists). Wrist arthroscopy was used in 4 patients. The Vickers ligament was resected and submitted for histopathological examination in 8 patients. Radiographic outcomes, 3D-CT, MRI, arthroscopy, surgical findings, and histopathology of the Vickers ligament were evaluated.

    Results

    The 3D-CT revealed that the Vickers ligament originated in the metaphysis and formed a metaphyseal defect at the palmar ulnar radius. In the sequential MR coronal images, the Vickers ligament could be divided into 3 branches, extending to the lunate, triquetrum and ulnar styloid. Arthroscopy and surgical findings revealed that the nature of the Vickers ligament was the stretched palmar ligament of the wrist. The histopathology results revealed ligamentous tissue and fibrocartilaginous metaplasia with a structure similar to that of the triangular fibrocartilage complex (TFCC).

    Conclusions

    The Vickers ligament is not a separate aberrant ligament. The nature of the Vickers ligament is a combination of the stretched TFCC ligament (palmar radioulnar ligament, ulnotriquetral ligament and ulnolunate ligament) and radiolunate ligament. The possible pathogenesis of Madelung deformity might be focal early epiphyseal closure at the middle part of the sigmoid notch, which leads to focal growth retardation of the radius and pulls palmar ligaments proximally to form the Vickers ligament.

  • Su-guo Wang, Yong-gang Wang, Guo-wei Qian, Li-na Tang, Xin Zhou, Dong-dong Cheng, Chen-liang Zhou, Qing-cheng Yang, Zan Shen, Gao-zhong Huang, Hong-tao Li
    Objective

    To investigate the serum lipid profiles of patients with localized osteosarcoma around the knee joint before and after neoadjuvant chemotherapy.

    Methods

    After retrospectively screening the data of 742 patients between January 2007 and July 2020, 50 patients aged 13 to 39 years with Enneking stage II disease were included in the study. Serum lipid levels, including total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), lipoprotein-α [Lp(a)], and apolipoprotein A1, B, and E (ApoA1, ApoB, and ApoE), and clinicopathological characteristics were collected before and after neoadjuvant chemotherapy.

    Results

    The mean levels of TC, TG, and ApoB were significantly increased following neoadjuvant chemotherapy (16%, 38%, and 20%, respectively, vs. pretreatment values; P<0.01). The mean levels of LDL-C and ApoE were also 19% and 16% higher, respectively (P<0.05). No correlation was found between the pretreatment lipid profile and the histologic response to chemotherapy. An increase in Lp(a) was strongly correlated with the Ki-67 index (R=0.31, P=0.023). Moreover, a trend toward longer disease-free survival (DFS) was observed in patients with decreased TG and increased LDL-C following chemotherapy, although this difference was not statistically significant (P=0.23 and P=0.24, respectively).

    Conclusion

    Significant elevations in serum lipids were observed after neoadjuvant chemotherapy in patients with localized osteosarcoma. There was no prognostic significance of pretreatment serum lipid levels on histologic response to neoadjuvant chemotherapy. The scale of increase in serum Lp(a) might have a potential prognostic role in osteosarcoma. Patients with increased LDL-C or reduced TG after chemotherapy seem to exhibit a trend toward favorable DFS.

  • Shan-shan Hu, Tong-yao Wang, Lu Ni, Fan-xin Hu, Bo-wen Yue, Ying Zheng, Tian-lun Wang, Abhishek Kumar, Yan-yan Wang, Jin-e Wang, Zhi-yong Zhou
    Objective

    Icariin (ICA) has a good neuroprotective effect and can upregulate neuronal basal autophagy in naturally aging rats. Mitochondrial dysfunction is associated with brain aging-related neurodegenerative diseases. Abnormal opening of the mitochondrial permeability transition pore (mPTP) is a crucial factor in mitochondrial dysfunction and is associated with excessive autophagy. This study aimed to explore that ICA protects against neuronal injury by blocking the mPTP opening and down-regulating autophagy levels in a D-galactose (D-gal)-induced cell injury model.

    Methods

    A cell model of neuronal injury was established in rat pheochromocytoma cells (PC12 cells) treated with 200 mmol/L D-gal for 48 h. In this cell model, PC12 cells were pre-treated with different concentrations of ICA for 24 h. MTT was used to detect cell viability. Senescence associated β-galactosidase (SA-β-Gal) staining was used to observe cell senescence. Western blot analysis was performed to detect the expression levels of a senescence-related protein (p21), autophagy markers (LC3B, p62, Atg7, Atg5 and Beclin 1), mitochondrial fission and fusion-related proteins (Drp1, Mfn2 and Opa1), and mitophagy markers (Pink1 and Parkin). The changes of autophagic flow were detected by using mRFP-GFP-LC3 adenovirus. The intracellular ultrastructure was observed by transmission electron microscopy. Immunofluorescence was used to detect mPTP, mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mtROS) and ROS levels. ROS and apoptosis levels were detected by flow cytometry.

    Results

    D-gal treatment significantly decreased the viability of PC12 cells, and markedly increased the SA-β-Gal positive cells as compared to the control group. With the D-gal stimulation, the expression of p21 was significantly up-regulated. Furthermore, D-gal stimulation resulted in an elevated LC3B II/I ratio and decreased p62 expression. Meanwhile, autophagosomes and autolysosomes were significantly increased, indicating abnormal activation of autophagy levels. In addition, in this D-gal-induced model of cell injury, the mPTP was abnormally open, the ROS generation was continuously increased, the MMP was gradually decreased, and the apoptosis was increased. ICA effectively improved mitochondrial dysfunction to protect against D-gal-induced cell injury and apoptosis. It strongly inhibited excessive autophagy by blocking the opening of the mPTP. Cotreatment with ICA and an mPTP inhibitor (cyclosporin A) did not ameliorate mitochondrial dysfunction. However, the protective effects were attenuated by cotreatment with ICA and an mPTP activator (lonidamine).

    Conclusion

    ICA inhibits the activation of excessive autophagy and thus improves mitochondrial dysfunction by blocking the mPTP opening.

  • Zhi-cheng Fan, Wen-jian Zhao, Yang Jiao, Shao-chun Guo, Yun-peng Kou, Min Chao, Na Wang, Chen-chen Zhou, Yuan Wang, Jing-hui Liu, Yu-long Zhai, Pei-gang Ji, Chao Fan, Liang Wang
    Objective

    To determine the factors that contribute to the survival of elderly individuals diagnosed with brain glioma and develop a prognostic nomogram.

    Methods

    Data from elderly individuals (age ≥65 years) histologically diagnosed with brain glioma were sourced from the Surveillance, Epidemiology, and End Results (SEER) database. The dataset was randomly divided into a training cohort and an internal validation cohort at a 6:4 ratio. Additionally, data obtained from Tangdu Hospital constituted an external validation cohort for the study. The identification of independent prognostic factors was achieved through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis, enabling the construction of a nomogram. Model performance was evaluated using C-index, ROC curves, calibration plot and decision curve analysis (DCA).

    Results

    A cohort of 20 483 elderly glioma patients was selected from the SEER database. Five prognostic factors (age, marital status, histological type, stage, and treatment) were found to significantly impact overall survival (OS) and cancer-specific survival (CSS), with tumor location emerging as a sixth variable independently linked to CSS. Subsequently, nomogram models were developed to predict the probabilities of survival at 6, 12, and 24 months. The assessment findings from the validation queue indicate a that the model exhibited strong performance.

    Conclusion

    Our nomograms serve as valuable prognostic tools for assessing the survival probability of elderly glioma patients. They can potentially assist in risk stratification and clinical decision-making.

  • Hong-xiang Huang, Pei-yuan Zhong, Ping Li, Su-juan Peng, Xin-jing Ding, Xiang-lian Cai, Jin-hong Chen, Xie Zhu, Zhi-hui Lu, Xing-yu Tao, Yang-yang Liu, Li Chen
    Objective

    The activities and products of carbohydrate metabolism are involved in key processes of cancer. However, its relationship with hepatocellular carcinoma (HCC) is unclear.

    Methods

    The cancer genome atlas (TCGA)-HCC and ICGC-LIRI-JP datasets were acquired via public databases. Differentially expressed genes (DEGs) between HCC and control samples in the TCGA-HCC dataset were identified and overlapped with 355 carbohydrate metabolism-related genes (CRGs) to obtain differentially expressed CRGs (DE-CRGs). Then, univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses were applied to identify risk model genes, and HCC samples were divided into high/low-risk groups according to the median risk score. Next, gene set enrichment analysis (GSEA) was performed on the risk model genes. The sensitivity of the risk model to immunotherapy and chemotherapy was also explored.

    Results

    A total of 8 risk model genes, namely, G6PD, PFKFB4, ACAT1, ALDH2, ACYP1, OGDHL, ACADS, and TKTL1, were identified. Moreover, the risk score, cancer status, age, and pathologic T stage were strongly associated with the prognosis of HCC patients. Both the stromal score and immune score had significant negative/positive correlations with the risk score, reflecting the important role of the risk model in immunotherapy sensitivity. Furthermore, the stromal and immune scores had significant negative/positive correlations with risk scores, reflecting the important role of the risk model in immunotherapy sensitivity. Eventually, we found that high-/low-risk patients were more sensitive to 102 drugs, suggesting that the risk model exhibited sensitivity to chemotherapy drugs. The results of the experiments in HCC tissue samples validated the expression of the risk model genes.

    Conclusion

    Through bioinformatic analysis, we constructed a carbohydrate metabolism-related risk model for HCC, contributing to the prognosis prediction and treatment of HCC patients.

  • Chai-ming Zeng, Bin Shao, Yan-ping Chen, Gui-sheng Ding
    Objective

    Mitofusin-2 (MFN2) is a mitochondrial membrane protein that plays a critical role in regulating mitochondrial fusion and cellular metabolism. To further elucidate the impact of MFN2, this study aimed to investigate its significance on hepatocellular carcinoma (HCC) cell function and its potential role in mediating chemosensitivity.

    Methods

    This study investigated the effects of silencing and overexpressing MFN2 on the survival, proliferation, invasion and migration abilities, and sorafenib resistance of MHCC97-L HCC cells. Additional experiments were conducted using XAV939 (a β-catenin inhibitor) and HLY78 (a β-catenin activator) to further validate these findings.

    Results

    Silencing MFN2 significantly promoted the survival and proliferation of MHCC97-L cells, enhanced their invasion and migration capacities, increased the IC50 of sorafenib, reduced the percentage of TUNEL-positive cells, and decreased the expression of proapoptotic proteins. Additionally, silencing MFN2 markedly induced the nuclear translocation of β-catenin, increased β-catenin acetylation levels and enhanced the expression of the downstream regulatory proteins Snail1 and Vimentin while inhibiting E-cadherin expression. Conversely, overexpressing MFN2 reversed the effects observed in MHCC97-L cells mentioned above. The results confirmed that silencing MFN2 activated the β-catenin/epithelial-mesenchymal transition (EMT) pathway and reduced the sensitivity of cells to sorafenib, which could be reversed by XAV939 treatment. Conversely, overexpression of MFN2 inhibited the β-catenin/EMT pathway and increased the sensitivity of cells to sorafenib, which could be altered by HLY78.

    Conclusion

    Low expression of MFN2 in HCC cells promotes the nuclear translocation of β-catenin, thereby activating the EMT pathway and mediating resistance to sorafenib.

  • Tong-yuan Liu, Xing Fu, Ying Yang, Jia Gu, Min Xiao, Deng-ju Li
    Objective

    The metabolic reprogramming of acute myeloid leukemia (AML) cells is a compensatory adaptation to meet energy requirements for rapid proliferation. This study aimed to examine the synergistic effects of glutamine deprivation and metformin exposure on AML cells.

    Methods

    SKM-1 cells (an AML cell line) were subjected to glutamine deprivation and/or treatment with metformin or bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES, a glutaminase inhibitor) or cytarabine. Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay, and cell apoptosis and reactive oxygen species (ROS) by flow cytometry. Western blotting was conducted to examine the levels of apoptotic proteins, including cleaved caspase-3 and poly(ADP-ribose) polymerase (PARP). Moreover, the human long noncoding RNA (lncRNA) microarray was used to analyze gene expression after glutamine deprivation, and results were confirmed with quantitative RT-PCR (qRT-PCR). The expression of metallothionein 2A (MT2A) was suppressed using siRNA. Cell growth and apoptosis were further detected by CCK-8 assay and flow cytometry, respectively, in cells with MT2A knockdown.

    Results

    Glutamine deprivation or treatment with BPTES inhibited cell growth and induced apoptosis in SKM-1 cells. The lncRNA microarray result showed that the expression of MT family genes was significantly upregulated after glutamine deprivation. MT2A knockdown increased apoptosis, while proliferation was not affected in SKM-1 cells. In addition, metformin inhibited cell growth and induced apoptosis in SKM-1 cells. Both glutamine deprivation and metformin enhanced the sensitivity of SKM-1 cells to cytarabine. Furthermore, the combination of glutamine deprivation with metformin exhibited synergistic antileukemia effects on SKM-1 cells.

    Conclusion

    Targeting glutamine metabolism in combination with metformin is a promising new therapeutic strategy for AML.

  • Chen-guang Yao, Zi-jia Zhao, Ting Tan, Jiang-ning Yan, Zhong-wei Chen, Jun-tao Xiong, Han-luo Li, Yan-hong Wei, Kang-hong Hu
    Objective

    Lindqvist-type polyoxometalates (POMs) exhibit potential antitumor activities. This study aimed to examine the effects of Lindqvist-type POMs against breast cancer and the underlying mechanism.

    Methods

    Using different cancer cell lines, the present study evaluated the antitumor activities of POM analogues that were modified at the body skeleton based on molybdenum-vanadium-centered negative oxygen ion polycondensations with different side strains. Cell colony formation assay, autophagy detection, mitochondrial observation, qRT-PCR, Western blotting, and animal model were used to evaluate the antitumor activities of POMs against breast cancer cells and the related mechanism.

    Results

    MO-4, a Lindqvist-type POM linking a proline at its side strain, was selected for subsequent experiments due to its low half maximal inhibitory concentration in the inhibition of proliferation of breast cancer cells. It was found that MO-4 induced the apoptosis of multiple types of breast cancer cells. Mechanistically, MO-4 activated intracellular mitophagy by elevating mitochondrial reactive oxygen species (ROS) levels and resulting in apoptosis. In vivo, breast tumor growth and distant metastasis were significantly reduced following MO-4 treatment.

    Conclusion

    Collectively, the results of the present study demonstrated that the novel Lindqvist-type POM MO-4 may exhibit potential in the treatment of breast cancer.

  • Xiao-lu Hao, Ran Chen, Wei Liu, Bao-ke Hou, Ling-hui Qu, Zhao-hui Li, Da-jiang Wang, Xin Jin, Hou-bin Huang
    Objective

    To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency.

    Methods

    A comprehensive questionnaire and ophthalmological assessments were administered to both affected patients and unaffected relatives. The clinical feature analysis included the evaluation of visual acuity, intraocular pressure, slit-lamp anterior segment examination, fundus photography, and spectral domain optical coherence tomography. To identify the mutation responsible for aniridia, targeted next-generation sequencing was used as a beneficial technique.

    Results

    A total of 4 mutations were identified, consisting of two novel frameshift mutations (c.314delA, p.K105Sfs*33 and c.838_845dup AACACACC, p.S283Tfs*85), along with two recurring nonsense mutations (c.307C>T, p.R103X and c.619A>T, p.K207*). Complete iris absence, macular foveal hypoplasia, and nystagmus were consistent in these PAX6 haplotype-deficient Chinese aniridia families, while corneal lesions, cataracts, and glaucoma exhibited heterogeneity both among the families and within the same family.

    Conclusion

    In our study, two novel PAX6 mutations associated with aniridia were identified in Chinese families, which expanded the phenotypic and genotypic spectrum of PAX6 mutations. We also analyzed the clinical characteristics of PAX6 haplotype deficiency in Chinese aniridia families.

  • Hong-yu Wu, Ban Luo, Gang Yuan, Qiu-xia Wang, Ping Liu, Ya-li Zhao, Lin-han Zhai, Wen-zhi Lv, Jing Zhang, Lang Chen
    Objective

    This study aimed to develop and test a model for predicting dysthyroid optic neuropathy (DON) based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid (CSF) in the optic nerve sheath.

    Methods

    This retrospective study included patients with thyroid-associated ophthalmopathy (TAO) without DON and patients with TAO accompanied by DON at our hospital. The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and, together with clinical factors, were screened by Least absolute shrinkage and selection operator. Subsequently, we constructed a prediction model using multivariate logistic regression. The accuracy of the model was verified using receiver operating characteristic curve analysis.

    Results

    In total, 80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study. Two variables (optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath) were found to be independent predictive factors and were included in the prediction model. In the development cohort, the mean area under the curve (AUC) was 0.994, with a sensitivity of 0.944, specificity of 0.967, and accuracy of 0.901. Moreover, in the validation cohort, the AUC was 0.960, the sensitivity was 0.889, the specificity was 0.893, and the accuracy was 0.890.

    Conclusions

    A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath, serving as a noninvasive potential tool to predict DON.

  • Jun-he Chen, Cheng-ming Wei, Qian-yu Lin, Zi Wang, Fu-ming Zhang, Mei-na Shi, Wen-jian Lan, Chang-gang Sun, Wan-jun Lin, Wen-zhe Ma
    Objective

    Colorectal cancer (CRC), a prevalent malignancy worldwide, has prompted extensive research into anticancer drugs. Traditional Chinese medicinal materials offer promising avenues for cancer management due to their diverse pharmacological activities. This study investigated the effects of Notopterygium incisum, a traditional Chinese medicine named Qianghuo (QH), on CRC cells and the underlying mechanism.

    Methods

    The sulforhodamine B assay and colony formation assay were employed to assess the effect of QH extract on the proliferation of CRC cell lines HCT116 and Caco-2. Propidium iodide (PI) staining was utilized to detect cell cycle progression, and PE Annexin V staining to detect apoptosis. Western blotting was conducted to examine the levels of apoptotic proteins, including B-cell lymphoma 2-interacting mediator of cell death (BIM), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (BAX) and cleaved caspase-3, as well as BIM stability after treatment with the protein synthesis inhibitor cycloheximide. The expression of BAX was suppressed using lentivirus-mediated shRNA to validate the involvement of the BIM/BAX axis in QH-induced apoptosis. The in vivo effects of QH extract on tumor growth were observed using a xenograft model. Lastly, APCMin+ mice were used to study the effects of QH extract on primary intestinal tumors.

    Results

    QH extract exhibited significant in vitro anti-CRC activities evidenced by the inhibition of cell proliferation, perturbation of cell cycle progression, and induction of apoptosis. Mechanistically, QH extract significantly increased the stability of BIM proteins, which undergo rapid degradation under unstressed conditions. Knockdown of BAX, the downstream effector of BIM, significantly rescued QH-induced apoptosis. Furthermore, the in vitro effect of QH extract was recapitulated in vivo. QH extract significantly inhibited the tumor growth of HCT116 xenografts in nude mice and decreased the number of intestinal polyps in the APCMin+ mice.

    Conclusion

    QH extract promotes the apoptosis of CRC cells by preventing the degradation of BIM.

  • Zi-zhuo Wang, Hui-li Wang, Wei Xiong, Juan Du, Rong Liu
    Objective

    High-risk human papillomavirus (HR-HPV) infection is the chief cause of cervical intraepithelial neoplasia (CIN) and cervical carcinoma. The Erhuang suppository (EHS) is a traditional Chinese medicine (TCM) prepared from realgar (As2S2), Coptidis rhizoma, alumen, and borneolum syntheticum and has been used for antiviral and antitumor purposes. However, whether EHS can efficiently alleviate HR-HPV infection remains unclear. This study was conducted to evaluate the efficacy of EHS for the treatment of persistent HR-HPV infection in the uterine cervix.

    Methods

    In this study, we evaluated the therapeutic efficacy of EHS in a randomized controlled clinical trial with a 3-month follow-up. Totally, 70 patients with persistent HR-HPV infection were randomly assigned to receive intravaginal administration of EHS or placebo. HPV DNA, ThinPrep cytologic test (TCT), colposcopy, and safety evaluation were carried out after treatment. Microarray analysis was performed to compare transcriptome profiles before and after EHS treatment. A K14-HPV16 mouse model was generated to confirm the efficiency of EHS.

    Results

    After 3 months, 74.3% (26/35) of the patients in the treatment group were HPV negative, compared to 6.9% (2/29) in the placebo group. High-throughput microarrays revealed distinct transcriptome profiles after treatment. The differentially expressed genes were significantly enriched in complement activation, immune response, and apoptotic processes. The K14-HPV16 mouse model also validated the remarkable efficacy of EHS.

    Conclusion

    This study demonstrated that EHS is effective against HR-HPV infection and cervical lesions. Additionally, no obvious systemic toxicity was observed in patients during the trial. The superior efficacy and safety of EHS demonstrated its considerable value as a potential cost-effective drug for the treatment of HPV infection and HPV-related cervical diseases.

  • Hai-long Li, Li-hua Shao, Xi Chen, Meng Wang, Qi-jie Qin, Ya-li Yang, Guang-run Zhang, Yang Hai, Yi-hong Tian
    Objective

    This study aimed to establish a neural cell injury model in vitro by stimulating PC12 cells with lipopolysaccharide (LPS) and to examine the effects of astragaloside IV on key targets using high-throughput sequence technology and bioinformatics analyses.

    Methods

    PC12 cells in the logarithmic growth phase were treated with LPS at final concentrations of 0.25, 0.5, 0.75, 1, and 1.25 mg/mL for 24 h. Cell morphology was evaluated, and cell survival rates were calculated. A neurocyte inflammatory model was established with LPS treatment, which reached a 50% cell survival rate. PC12 cells were treated with 0.01, 0.1, 1, 10, or 100 µmol/L astragaloside IV for 24 h. The concentration of astragaloside IV that did not affect the cell survival rate was selected as the treatment group for subsequent experiments. NOS activity was detected by colorimetry; the expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1β, TLR4, NOS and COX-2 mRNA and protein were detected by RT-qPCR and Western blotting. The differentially expressed genes (DEGs) between the groups were screened using a second-generation sequence (fold change>2, P<0.05) with the following KEGG enrichment analysis, RT-qPCR and Western blotting were used to detect the mRNA and protein expression of DEGs related to the IL-17 pathway in different groups of PC12 cells.

    Results

    The viability of PC12 cells was not altered by treatment with 0.01, 0.1, or 1 µmol/L astragaloside IV for 24 h (P>0.05). However, after treatment with 0.5, 0.75, 1, or 1.25 mg/mL LPS for 24 h, the viability steadily decreased (P<0.01). The mRNA and protein expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1β, TLR4, NOS, and COX-2 were significantly increased after PC12 cells were treated with 1 mg/mL LPS for 24 h (P<0.01); however, these changes were reversed when PC12 cells were pretreated with 0.01, 0.1, or 1 µmol/L astragaloside IV in PC12 cells and then treated with 1 mg/mL LPS for 24 h (P<0.05). Second-generation sequencing revealed that 1026 genes were upregulated, while 1287 genes were downregulated. The DEGs were associated with autophagy, TNF-α, interleukin-17, MAPK, P53, Toll-like receptor, and NOD-like receptor signaling pathways. Furthermore, PC12 cells treated with a 1 mg/mL LPS for 24 h exhibited increased mRNA and protein expression of CCL2, CCL11, CCL7, MMP3, and MMP10, which are associated with the IL-17 pathway. RT-qPCR and Western blotting analyses confirmed that the DEGs listed above corresponded to the sequence assay results.

    Conclusion

    LPS can damage PC12 cells and cause inflammatory reactions in nerve cells and DNA damage. astragaloside IV plays an anti-inflammatory and DNA damage protective role and inhibits the IL-17 signaling pathway to exert a neuroprotective effect in vitro.

  • Jing-ru Wang, Jun-yao Zhang, Wei-Ke Ji