This study aimed to explore the diagnostic value of novel technique-targeted next-generation sequencing (tNGS) of bronchoalveolar lavage fluid (BALF) in pulmonary mycobacterial infections.
This retrospective study was conducted on patients who underwent bronchoscopy and tNGS, smear microscopy, and mycobacterial culture of BALF. Patients with positive Mycobacterium tuberculosis (MTB) culture or GeneXpert results were classified into the tuberculosis case group. Those diagnosed with nontuberculous mycobacteria (NTM)-pulmonary disease (NTM-PD) composed the case group of NTM-PD patients. The control group comprised patients without tuberculosis or NTM-PD. Sensitivity, specificity, and receiver operating characteristic (ROC) curves were used to evaluate the diagnostic performance.
For tuberculosis patients with positive mycobacterial culture results, the areas under the ROC curves (AUCs) for tNGS, GeneXpert, and smear microscopy were 0.975 (95% CI: 0.935, 1.000), 0.925 (95% CI: 0.859, 0.991), and 0.675 (95% CI: 0.563, 0.787), respectively. For tuberculosis patients with positive GeneXpert results, the AUCs of tNGS, culture, and smear microscopy were 0.970 (95% CI: 0.931, 1.000), 0.850 (95% CI: 0.770, 0.930), and 0.680 (95% CI: 0.579, 0.781), respectively. For NTM-PD, the AUCs of tNGS, culture, and smear-positive but GeneXpert-negative results were 0.987 (95% CI: 0.967, 1.000), 0.750 (95% CI: 0.622, 0.878), and 0.615 (95% CI: 0.479, 0.752), respectively. The sensitivity and specificity of tNGS in NTM-PD patients were 100% and 97.5%, respectively.
tNGS demonstrated superior diagnostic efficacy in mycobacterial infection, indicating its potential for clinical application.
This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models (LLMs) in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.
This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons (AAOS) and authoritative orthopedic publications. A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge, disease diagnosis, fracture classification, treatment options, and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4, ChatGLM, and Spark LLM, with their generated responses recorded. The overall quality, accuracy, and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.
Compared with their unoptimized LLMs, the optimized version of GPT-4 showed improvements of 15.3% in overall quality, 12.5% in accuracy, and 12.8% in comprehensiveness; ChatGLM showed improvements of 24.8%, 16.1%, and 19.6%, respectively; and Spark LLM showed improvements of 6.5%, 14.5%, and 24.7%, respectively.
The optimization of knowledge bases significantly enhances the quality, accuracy, and comprehensiveness of the responses provided by the 3 models in the orthopedic field. Therefore, knowledge base optimization is an effective method for improving the performance of LLMs in specific fields.
The brain-computer interface (BCI) system serves as a critical link between external output devices and the human brain. A monitored object’s mental state, sensory cognition, and even higher cognition are reflected in its electroencephalography (EEG) signal. Nevertheless, unprocessed EEG signals are frequently contaminated with a variety of artifacts, rendering the analysis and elimination of impurities from the collected EEG data exceedingly challenging, not to mention the manual adjustment thereof. Over the last few decades, the rapid advancement of artificial intelligence (AI) technology has contributed to the development of BCI technology. Algorithms derived from AI and machine learning have significantly enhanced the ability to analyze and process EEG electrical signals, thereby expanding the range of potential interactions between the human brain and computers. As a result, the present BCI technology with the help of AI can assist physicians in gaining a more comprehensive understanding of their patients’ physical and psychological status, thereby contributing to improvements in their health and quality of life.
Alzheimer’s disease (AD) is one of the most common forms of neurodegenerative dementia. The etiology of AD is multifactorial, and its complex pathophysiology involves tau and amyloid-β deposition, increased oxidative stress, neuroinflammation, metabolic disorders, and massive neuronal loss. Due to its complex pathology, no effective cure for AD has been found to date. Therefore, there is an unmet clinical need for the development of new drugs against AD. Natural products are known to be good sources of compounds with pharmacological activity and have potential for the development of new therapeutic agents. Naringin, a naturally occurring flavanone glycoside, is predominantly found in citrus fruits and Chinese medicinal herbs. Mounting evidence shows that naringin and its aglycone, naringenin, have direct neuroprotective effects on AD, such as anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, and anti-neuroinflammatory effects, as well as metal chelation. Furthermore, they are known to improve disordered glucose/lipid metabolism, which is a high risk factor for AD. In this review, we summarize the latest data on the impact of naringin and naringenin on the molecular mechanisms involved in AD pathophysiology. Additionally, we provide an overview of the current clinical applications of naringin and naringenin. The novel delivery systems for naringin and naringenin, which can address their widespread pharmacokinetic limitations, are also discussed. The literature indicates that naringin and naringenin could be multilevel, multitargeted, and multifaceted for preventing and treating AD.
The effectiveness of radiofrequency ablation (RFA) in improving long-term survival outcomes for patients with a solitary hepatocellular carcinoma (HCC) measuring 5 cm or less remains uncertain. This study was designed to elucidate the impact of RFA therapy on the survival outcomes of these patients and to construct a prognostic model for patients following RFA.
This study was performed using the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2017, focusing on patients diagnosed with a solitary HCC lesion ≤5 cm in size. We compared the overall survival (OS) and cancer-specific survival (CSS) rates of these patients with those of patients who received hepatectomy, radiotherapy, or chemotherapy or who were part of a blank control group. To enhance the reliability of our findings, we employed stabilized inverse probability treatment weighting (sIPTW) and stratified analyses. Additionally, we conducted a Cox regression analysis to identify prognostic factors. XGBoost models were developed to predict 1-, 3-, and 5-year CSS. The XGBoost models were evaluated via receiver operating characteristic (ROC) curves, calibration plots, decision curve analysis (DCA) curves and so on.
Regardless of whether the data were unadjusted or adjusted for the use of sIPTWs, the 5-year OS (46.7%) and CSS (58.9%) rates were greater in the RFA group than in the radiotherapy (27.1%/35.8%), chemotherapy (32.9%/43.7%), and blank control (18.6%/30.7%) groups, but these rates were lower than those in the hepatectomy group (69.4%/78.9%). Stratified analysis based on age and cirrhosis status revealed that RFA and hepatectomy yielded similar OS and CSS outcomes for patients with cirrhosis aged over 65 years. Age, race, marital status, grade, cirrhosis status, tumor size, and AFP level were selected to construct the XGBoost models based on the training cohort. The areas under the curve (AUCs) for 1, 3, and 5 years in the validation cohort were 0.88, 0.81, and 0.79, respectively. Calibration plots further demonstrated the consistency between the predicted and actual values in both the training and validation cohorts.
RFA can improve the survival of patients diagnosed with a solitary HCC lesion ≤5 cm. In certain clinical scenarios, RFA achieves survival outcomes comparable to those of hepatectomy. The XGBoost models developed in this study performed admirably in predicting the CSS of patients with solitary HCC tumors smaller than 5 cm following RFA.
Cymbopogon citratus (DC.) Stapf is a medicinal and edible herb that is widely used for the treatment of gastric, nervous and hypertensive disorders. In this study, we investigated the cardioprotective effects and mechanisms of the essential oil, the main active ingredient of Cymbopogon citratus, on isoproterenol (ISO)-induced cardiomyocyte hypertrophy.
The compositions of Cymbopogon citratus essential oil (CCEO) were determined by gas chromatography-mass spectrometry. Cardiomyocytes were pretreated with 16.9 µg/L CCEO for 1 h followed by 10 µmol/L ISO for 24 h. Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated. Subsequently, transcriptome sequencing (RNA-seq) and target verification were used to further explore the underlying mechanism.
Our results showed that the CCEO mainly included citronellal (45.66%), geraniol (23.32%), and citronellol (10.37%). CCEO inhibited ISO-induced increases in cell surface area and protein content, as well as the upregulation of fetal gene expression. Moreover, CCEO inhibited ISO-induced NLRP3 inflammasome expression, as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3, ASC, CASP1, GSDMD, and IL-1β, as well as reduced protein levels of NLRP3, ASC, pro-caspase-1, caspase-1 (p20), GSDMD-FL, GSDMD-N, and pro-IL-1β. The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes. Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1, Sdhd, mt-Cytb, Uqcrq, and mt-Atp6 but had no obvious effects on mt-Col expression.
CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.
This study aimed to explore the risk factors and outcomes of hypokalemia during the recovery period from anesthesia in the gynecological population.
This retrospective cohort study included 208 patients who underwent gynecological surgery at our institution between January 2021 and March 2022. Data were collected for each patient, including demographics, disease status, surgical data, and clinical information. Preoperative bowel preparation, postoperative gastrointestinal function, and electrolyte levels were compared between the two groups using propensity score matching (PSM).
The incidence of hypokalemia (serum potassium level <3.5 mmol/L) during the recovery period from anesthesia was approximately 43.75%. After PSM, oral laxative use (96.4% vs. 82.4%, P=0.005), the number of general enemas ( P=0.014), and the rate of ≥2 general enemas (92.9% vs. 77.8%, P=0.004) were identified as risk factors for hypokalemia, which was accompanied by decreased PaCO 2 and hypocalcemia. There were no significant differences in postoperative gastrointestinal outcomes, such as the time to first flatus or feces, the I-FEED score (a scoring system was created to evaluate impaired postoperative gastrointestinal function), or postoperative recovery outcomes, between the hypokalemia group and the normal serum potassium group.
Hypokalemia during postanesthesia recovery period occurred in 43.75% of gynecological patients, which resulted from preoperative mechanical bowel preparation; however, it did not directly affect clinical outcomes, including postoperative gastrointestinal function, postoperative complications, and length of hospital stay.
Hemophilia carriers (HCs), who are heterozygous for mutations in the clotting factor VIII/clotting factor IX gene ( F8 or F9), may have a wide range of clotting factor levels, from very low, similar to afflicted males, to the upper limit of normal, and may experience mental health issues. The purpose of this study was to provide genetic information on mothers of hemophilia patients and to understand the clotting factor activity and phenotype of HCs. Additionally, we aimed to investigate the mental health status of HCs in China.
A total of 127 hemophilia mothers, including 93 hemophilia A (HA) mothers and 34 hemophilia B (HB) mothers, were enrolled in this study. Long distance PCR, multiplex PCR, and Sanger sequencing were used to analyze mutations in F8 or F9. Coagulation factor activity was detected by a one-stage clotting assay. The Symptom Checklist 90 (SCL-90, China/Mandarin version) was given to HCs at the same time to assess their mental health.
A total of 90.6% of hemophilia mothers were diagnosed genetically as carriers, with inversion in intron 22 and missense mutations being the most common mutation types in HA and HB carriers, respectively. The median clotting factor level in carriers was 0.74 IU/mL (ranging from 0.09 to 1.74 IU/mL) compared with 1.49 IU/mL (ranging from 0.93 to 1.89 IU/mL) in noncarriers, of which 14.3% of HCs had clotting factor levels of 0.40 IU/mL or below. A total of 53.8% (7/13) of HA carriers with low clotting factor levels (less than 0.50 IU/mL) had a history of bleeding, while none of the HB carriers displayed a bleeding phenotype. The total mean score and the global severity index of the SCL-90 for surveyed HCs were 171.00 (±60.37) and 1.78 (±0.59), respectively. A total of 67.7% of the respondents had psychological symptoms, with obsessive-compulsive disorder being the most prevalent and severe. The pooled estimates of all nine factors were significantly higher than those in the general population ( P<0.05).
The detection rate of gene mutations in hemophilia mothers was 90.6%, with a median clotting factor level of 0.74 IU/mL, and 14.3% of HCs had a clotting factor level of 0.40 IU/mL or below. A history of bleeding was present in 41.2% of HCs with low clotting factor levels (less than 0.50 IU/mL). Additionally, given the fragile mental health status of HCs in China, it is critical to develop efficient strategies to improve psychological well-being.
Glucose-6-phosphate isomerase (GPI) deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants. This disorder exhibits wide heterogeneity in its clinical manifestations and molecular characteristics, often posing challenges for precise diagnoses using conventional methods. To this end, this study aimed to identify the novel variants responsible for GPI deficiency in a Chinese family.
The clinical manifestations of the patient were summarized and analyzed for GPI deficiency phenotype diagnosis. Novel compound heterozygous variants of the GPI gene, c.174C>A (p.Asn58Lys) and c.1538G>T (p.Trp513Leu), were identified using whole-exome and Sanger sequencing. The AlphaFold program and Chimera software were used to analyze the effects of compound heterozygous variants on GPI structure.
By characterizing 53 GPI missense/nonsense variants from previous literature and two novel missense variants identified in this study, we found that most variants were located in exons 3, 4, 12, and 18, with a few localized in exons 8, 9, and 14. This study identified novel compound heterozygous variants associated with GPI deficiency. These pathogenic variants disrupt hydrogen bonds formed by highly conserved GPI amino acids.
Early family-based sequencing analyses, especially for patients with congenital anemia, can help increase diagnostic accuracy for GPI deficiency, improve child healthcare, and enable genetic counseling.
Autosomal recessive bestrophinopathy (ARB), a retinal degenerative disease, is characterized by central visual loss, yellowish multifocal diffuse subretinal deposits, and a dramatic decrease in the light peak on electrooculogram. The potential pathogenic mechanism involves mutations in the BEST1 gene, which encodes Ca 2+-activated Cl − channels in the retinal pigment epithelium (RPE), resulting in degeneration of RPE and photoreceptor. In this study, the complete clinical characteristics of two Chinese ARB families were summarized.
Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing was performed on the probands to screen for disease-causing gene mutations, and Sanger sequencing was applied to validate variants in the patients and their family members.
Two novel mutations, c.202T>C (chr11:61722628, p.Y68H) and c.867+97G>A, in the BEST1 gene were identified in the two Chinese ARB families. The novel missense mutation BEST1 c.202T>C (p.Y68H) resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1. Another novel variant, BEST1 c.867+97G>A (chr11:61725867), located in intron 7, might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.
Our findings represent the first use of third-generation sequencing (TGS) to identify novel BEST1 mutations in patients with ARB, indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes. The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.
Uterine corpus endometrial carcinoma (UCEC), a kind of gynecologic malignancy, poses a significant risk to women’s health. The precise mechanism underlying the development of UCEC remains elusive. Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein superfamily, was reported to be dysregulated in various illnesses, including malignant tumors. This study aimed to examine the involvement of ZNF554 in the development of UCEC.
The expression of ZNF554 in UCEC tissues and cell lines were examined by qRT-PCR and Western blot assay. Cells with stably overexpressed or knocked-down ZNF554 were established through lentivirus infection. CCK-8, wound healing, and Transwell invasion assays were employed to assess cell proliferation, migration, and invasion. Propidium iodide (PI) staining combined with fluorescence-activated cell sorting (FACS) flow cytometer was utilized to detect cell cycle distribution. qRT-PCR and Western blotting were conducted to examine relative mRNA and protein levels. Chromatin immunoprecipitation assay and luciferase reporter assay were used to explore the regulatory role of ZNF554 in RNA binding motif 5 (RBM5).
The expression of ZNF554 was found to be reduced in both UCEC samples and cell lines. Decreased expression of ZNF554 was associated with higher tumor stage, decreased overall survival, and reduced disease-free survival in UCEC. ZNF554 overexpression suppressed cell proliferation, migration, and invasion, while also inducing cell cycle arrest. In contrast, a decrease in ZNF554 expression resulted in the opposite effect. Mechanistically, ZNF554 transcriptionally regulated RBM5, leading to the deactivation of the Wingless (WNT)/β-catenin signaling pathway. Moreover, the findings from rescue studies demonstrated that the inhibition of RBM5 negated the impact of ZNF554 overexpression on β-catenin and p-glycogen synthase kinase-3β (p-GSK-3β). Similarly, the deliberate activation of RBM5 reduced the increase in β-catenin and p-GSK-3β caused by the suppression of ZNF554. In vitro experiments showed that ZNF554 overexpression-induced decreases in cell proliferation and migration were counteracted by RBM5 knockdown. Additionally, when RBM5 was overexpressed, it hindered the improvements in cell proliferation and migration caused by reducing the ZNF554 levels.
ZNF554 functions as a tumor suppressor in UCEC. Furthermore, ZNF554 regulates UCEC progression through the RBM5/WNT/β-catenin signaling pathway. ZNF554 shows a promise as both a prognostic biomarker and a therapeutic target for UCEC.
Complete resection of malignant gliomas is often challenging. Our previous study indicated that intraoperative contrast-enhanced ultrasound (ICEUS) could aid in the detection of residual tumor remnants and the total removal of brain lesions. This study aimed to investigate the survival rates of patients undergoing resection with or without the use of ICEUS and to assess the impact of ICEUS on the prognosis of patients with malignant glioma.
A total of 64 patients diagnosed with malignant glioma (WHO grade HI and IV) who underwent surgery between 2012 and 2018 were included. Among them, 29 patients received ICEUS. The effects of ICEUS on overall survival (OS) and progression-free survival (PFS) of patients were evaluated. A quantitative analysis was performed to compare ICEUS parameters between gliomas and the surrounding tissues.
The ICEUS group showed better survival rates both in OS and PFS than the control group. The univariate analysis revealed that age, pathology and ICEUS were significant prognostic factors for PFS, with only age being a significant prognostic factor for OS. In multivariate analysis, age and ICEUS were significant prognostic factors for both OS and PFS. The quantitative analysis showed that the intensity and transit time of microbubbles reaching the tumors were significantly different from those of microbubbles reaching the surrounding tissue.
ICEUS facilitates the identification of residual tumors. Age and ICEUS are prognostic factors for malignant glioma surgery, and use of ICEUS offers a better prognosis for patients with malignant glioma.
The objective of this research was to explore the difference and correlation of the morphological and hemodynamic features between sidewall and bifurcation aneurysms in anterior circulation arteries, utilizing computational fluid dynamics as a tool for analysis.
In line with the designated inclusion criteria, this study covered 160 aneurysms identified in 131 patients who received treatment at Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, China, from January 2021 to September 2022. Utilizing follow-up digital subtraction angiography (DSA) data, these cases were classified into two distinct groups: the sidewall aneurysm group and the bifurcation aneurysm group. Morphological and hemodynamic parameters in the immediate preoperative period were meticulously calculated and examined in both groups using a three-dimensional DSA reconstruction model.
No significant differences were found in the morphological or hemodynamic parameters of bifurcation aneurysms at varied locations within the anterior circulation. However, pronounced differences were identified between sidewall and bifurcation aneurysms in terms of morphological parameters such as the diameter of the parent vessel (D vessel), inflow angle (θ F), and size ratio (SR), as well as the hemodynamic parameter of inflow concentration index (ICI) ( P<0.001). Notably, only the SR exhibited a significant correlation with multiple hemodynamic parameters ( P<0.001), while the ICI was closely related to several morphological parameters (R>0.5, P<0.001).
The significant differences in certain morphological and hemodynamic parameters between sidewall and bifurcation aneurysms emphasize the importance to contemplate variances in threshold values for these parameters when evaluating the risk of rupture in anterior circulation aneurysms. Whether it is a bifurcation or sidewall aneurysm, these disparities should be considered. The morphological parameter SR has the potential to be a valuable clinical tool for promptly distinguishing the distinct rupture risks associated with sidewall and bifurcation aneurysms.