2025-03-22 2013, Volume 33 Issue 5

  • Select all
  • Shui Xiang , Nian-guo Dong , Jin-ping Liu , Yu Wang , Jia-wei Shi , Zhan-jie Wei , Xing-jian Hu , Li Gong

    The main pathogenesis of saphenous vein graft neointimal hyperplasia after coronary artery bypass grafting (CABG) is inflammation-caused migration and proliferation of vascular smooth muscle cells (VSMCs). Janus kinase 2/signal transducer and activators of transcription 3 (JAK2/STAT3) pathway is an important signaling pathway through which VSMCs phenotype conversion occurs. Suppressor of cytokine signaling 3 (SOCS3) is the classic negative feedback inhibitor of JAK2/STAT3 pathway. Growing studies show that SOCS3 plays an important anti-inflammatory role in numerous autoimmune diseases, inflammatory diseases and inflammation-related tumors. However, the effect and mechanism of SOCS3 on vein graft disease is unclear. The purpose of this study was to investigate the effects of SOCS3 on the inflammation, migration and proliferation of VSMCs in vitro and the mechanism. The small interference RNA plasmid targeting rat SOCS3 (SiRNA-rSOCS3) and the recombinant adenovirus vector carrying rat SOCS3 gene (pYrAd-rSOCS3) were constructed, and the empty plamid (SiRNA-control) and vector (pYrAd-GFP) only carrying GFP reported gene were constructed as control. The rat VSMCs were cultured. There were two large groups of A (SOCS3 up-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+pYrAd-rSOCS3 group, IL-6/IFN-γ+pYrAd-GFP group; and B (SOCS3 down-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+SiRNA-rSOCS3 group and IL-6/ IFN -γ+SiRNA-control group. The pYrAd-rSOCS3 and SiRNA-rSOCS3 were transfected into VSMCs induced by IL-6/IFN-γ. After 24 h, real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were used to detect the mRNA and protein expression of SOCS3, STAT3 (only by Western blotting), P-STAT3 (only by Western blotting), IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1. The MTT, Transwell assay and flow cytometry were used to examine VSMCs proliferation, migration and cell cycle progression, respectively. As compared with control group, the mRNA and protein expression of SOCS3, STAT3, P-STAT3, IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly up-regulated in VSMCs stimulated by IL-6/IFN-γ. However, in VSMCs transfected with pYrAd-rSOCS3 before stimulation with IL-6/IFN-γ, the expression of SOCS3 mRNA and protein was further up-regulated, and that of STAT3, P-STAT3, IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly down-regulated as compared with IL-6/IFN-γ group and IL-6/IFN-γ+pYrAd-GFP group. The expression of those related-cytokines in IL-6/IFN-γ+SiRNA-rSOCS3 group was markedly increased as compared with IL-6/IFN-γ group and IL-6/IFN-γ+SiRNA-control group. The absorbance (A) values, the number of cells migrating to the lower chamber, and percentage of cells in the G2/M+S phase were increased in VSMCs stimulated by IL-6/IFN-γ. In VSMCs incubated with pYrAd-rSOCS3 or SiRNA-rSOCS3 before IL-6/IFN-γ stimulation, the A values, the number of cells migrating to the lower chamber, and the percentage of cells in the G2/M+S phase were significantly decreased, and increased respectively. These results imply that IL-6/IFN-γ, strong inflammatory stimulators, can promote transformation of VSMCs phenotype form a quiescent contractile state to a synthetic state by activating JAK2/STAT3 pathway. Over-expresssed SOCS3 might inhibit pro-inflammatory effect, migration and growth of VSMCs by blocking STAT3 activation and phosphorylation. These data in vitro confirm that SOCS3 may play a negatively regulatory role in development and progression of vein graft failure. These conclusions can provide a novel strategy for clinical treatment of vein graft diseases and a new theoretic clue for related drug development.

  • Jie-wen Tan , Wei-wei Qi , Rui-xin Ye , Yuan-yuan Wu

    Recent clinical trials have shown that electrical stimulation has beneficial effects in obstructive sleep apnea syndrome (OSAS). The purpose of this study was to evaluate the efficacy of electrical stimulation therapy for OSAS with a meta-analysis. The meta-analysis of all relative studies was performed through searching international literature, including PUBMED, CNKI, and EMBASE databases. This literature analysis compared all patients undergoing electrical stimulation therapy with respect to the respiratory disturbance index (RDI) and changes in sleep structure. Six studies were selected involving a total of 91 patients. The meta-analysis indicated that electrical stimulation therapy reduced RDI, longest apnea time, and improved the minimum SaO2. Based on the evidence found, electrical stimulation may be a potential therapy for OSAS, warranting further clinical trials.

  • Yong Cao , Hui-long Chen , Sheng Cheng , Jun-gang Xie , Wei-ning Xiong , Yong-jian Xu , Hui-juan Fang

    In order to study whether cysteine-rich 61 protein (cyr61) is involved in the pathogenesis of asthma and its relation to airway inflammation, the effect of dexamethasone (Dxm) on the expression of cyr61 in the lung tissues of asthmatic mice was investigated. Forty BALB/c mice were divided into asthma group (n=15), control group (n=10) and Dxm group (n=15). The asthma group was sensitized and challenged by ovalbumin (OVA). The mice in Dxm group were intraperitoneally administered with Dxm after OVA challenge. The expression of cyr61 in the lung tissues was detected by using immunohistochemistry, and that of eotaxin protein in the bronchoalveolar lavage fluid (BALF) by using enzyme-linked immunosorbent assay (ELISA). The number of inflammatory cells in BALF was also analyzed. The results showed that the cyr61 expression was highest in asthma group (P<0.05), followed by Dxm group (P<0.05) and control group. The cyr61 had a positive correlation with the total nucleated cells (r=0.867, P<0.05), especially eosinophils (r=0.856, P<0.05), and eotaxin level (r=0.983, P<0.05) in the BALF. Our findings suggested that cyr61 is expressed in airway epithelial cells and has a positive correlation with eotaxin and number of airway infiltrating eosinophils.

  • Si-miao Xu , Kun Tang , Li Meng , Yi Tang

    The activity of the mTOR pathway is frequently increased in acute myeloid leukemia, and is tightly related with cellular proliferation. Leucine is tightly linked to the mTOR pathway and can activate it, thereby stimulating cellular proliferation. LAT3 is a major transporter for leucine, and suppression of its expression can reduce cell proliferation. Here, we show that suppression of LAT3 expression can reduce proliferation of the acute leukemia cell line, K562. We investigated the mRNA and protein expression of LAT3 in several leukemia cell lines and normal peripheral blood mononuclear cells (PBMNCs) using RT-PCR and Western blotting. We also evaluated cell viability using a methyl thiazolyl tetrazolium (MTT) assay after blocking LAT3 expression with either shRNA targeted to LAT3 or a small molecular inhibitor BCH (2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid). LAT3 mRNA and protein expression was detected in leukemia cell lines, but not in normal PBMNCs. Using K562 cells, it was found that cellular proliferation and mTOR pathway activity were significantly reduced when LAT3 was blocked with either shRNA or BCH. Our results suggest that leukemia cell proliferation can be significantly suppressed by blocking LAT3. This finding may lead to a new strategy to develop clinical therapy for the treatment of acute myeloid leukemia.

  • Wen-long Wang , Shuang-shuang Zhang , Jie Deng , Jun-yan Zhao , Chong-qiang Zhao , Li Lin , Cun-tai Zhang , Jia-gao Lv

    Abnormal enhanced transmural dispersion of repolarization (TDR) plays an important role in the maintaining of the severe ventricular arrhythmias such as torsades de pointes (TDP) which can be induced in long-QT (LQT) syndrome. Taking advantage of an in vitro rabbit model of LQT2, we detected the effects of KN-93, a CaM-dependent kinase (CaMK) II inhibitor on repolarization heterogeneity of ventricular myocardium. Using the monophasic action potential recording technique, the action potentials of epicardium and endocardium were recorded in rabbit cardiac wedge infused with hypokalemic, hypomagnesaemic Tyrode’s solution. At a basic length (BCL) of 2000 ms, LQT2 model was successfully mimicked with the perfusion of 0.5 μmol/L E-4031, QT intervals and the interval from the peak of T wave to the end of T wave (Tp-e) were prolonged, and Tp-e/QT increased. Besides, TDR was increased and the occurrence rate of arrhythmias like EAD, R-on-T extrasystole, and TDP increased under the above condition. Pretreatment with KN-93 (0.5 μmol/L) could inhibit EAD, R-on-T extrasystole, and TDP induced by E-4031 without affecting QT interval, Tp-e, and Tp-e/QT. This study demonstrated KN-93, a CaMKII inhibitor, can inhibit EADs which are the triggers of TDP, resulting in the suppression of TDP induced by LQT2 without affecting TDR.

  • Hua Peng , Zu-bo Wu , Shuang-shuang Kong , Ling Li

    The role of (pro)rennin receptor (PRR) in cardiomyocytes of a heart failure (HF) rat model was studied. Spontaneously hypertensive rats (SHR) with HF (SHR-HF) or not were identified by two-dimensional (2-D) ultrasound. Age-matched Wistar Kyoto normotensive (WKY) rats were used as controls. PRR short hair RNA (sh-RNA) was injected into the heart of SHR-HF. Simultaneously SHR and controls received the same shRNA injection into the heart. Scramble shRNA was injected into the heart as controls. The expression of PRR mRNA and protein in cardiomyocytes was detected by using real-time PCR and Western blotting respectively. The heart function was evaluated by 2-D ultrasound, including eject fraction (EF%), fractional shortening (FS%), left ventricle thickness (LV), and inter-ventricular septal thickness (IVS). The number of apoptotic cardiomyocytes was counted by using flow cytometry. The results showed that the mRNA and protein expression levels of PRR were significantly higher in cardiomyocytes of SHR-HF group than in those of SHR group or control group. The apoptosis of myocytes in SHR-HF group was increased as compared with SHR group or control group. After knock-down of PRR with shRNA in SHR-HF group, the apoptosis of myocytes was reduced, resulting in the improved heart function. It was suggested that down-regulation of PRR might protect the heart from development of HF in SHR-HF by inhibiting the apoptosis of cardiomyocytes.

  • Qin-mei Ke , Ji Wu , Li Tian , Wei Li , Yi-mei Du

    The influence of hypoxia on the activity of voltage-gated potassium channel in pulmonary artery smooth muscle cells (PASMCs) of rats and its roles in the pathogenesis of chronic pulmonary heart disease were investigated. Eighty male Sprague-Dawley rats were randomly allocated into control group (n=10), acute hypoxic group (n=10), and chronic hypoxic groups (n=60). The chronic hypoxic groups were randomly divided into 6 subgroups (n=10 each) according to the chronic hypoxic periods. The rats in the control group were kept in room air and those in acute hypoxic group in hypoxia environmental chamber for 8 h. The rats in chronic hypoxic subgroups were kept in hypoxia environmental chamber for 8 h per day for 5, 10, 15, 20, 25, and 30 days, respectively. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVHI), and the current of voltage-gated potassium channel (IK) in PASMCs were measured. Results showed that both acute and chronic hypoxia could decrease the IK in PASMCs of rats and the I-V relationship downward shifted to the right. And the peak IK density at +60mV decreased with prolongation of hypoxia exposure. No significant difference was noted in the density of IK (at +60 mV) and I-V relationship between control group and chronic hypoxic subgroup exposed to hypoxia for 5 days (P>0.05), but there was a significant difference between control group and chronic hypoxic subgroup exposed to hypoxia for 10 days (P<0.05). Significant differences were noted in the IK density (at +60 mV) and I-V relationships between control group and chronic hypoxic subgroups exposed to hypoxia for 20 days and 30 days (P<0.01). Compared with control rats, the mPAP and RVHI were significantly increased after chronic exposure to hypoxia for 10 days (P<0.05), which were further increased with prolongation of hypoxia exposure, and there were significant differences between control group and chronic hypoxic subgroups exposed to hypoxia for 20 days and 30 days (P<0.01). Both the mPAP and the RVHI were negatively correlated with the density of IK (r=−0.89769 and −0.94476, respectively, both P<0.01). It is concluded that exposure to hypoxia may cause decreased activity of voltage-gated potassium channel, leading to hypoxia pulmonary vasoconstriction (HPV). Sustained HPV may result in chronic pulmonary hypertension, even chronic pulmonary heart disease, contributing to the pathogenesis of chronic pulmonary heart disease.

  • Xian-ming Chu , Xue-bin Li , Ping Zhang , Long Wang , Ding Li , Jiang-bo Duan , Bing Li , Ji-hong Guo

    As new-type powered sheaths are expensive and unavailable, the standard lead extraction techniques remain the mainstay in clinical applications in many countries. The purpose of this study was to re-evaluate the clinical application of the standard lead extraction techniques and equipment, and make some procedural modifications and innovations. In our center, between January 2006 and May 2012, 229 patients (median, 66 years) who underwent lead extraction due to infection and lead malfunction were registered and followed up prospectively with respect to clinical features, reasons for lead extraction, technical characteristics, and clinical prognosis. A total of 440 leads had to be extracted transvenously by using special tools from 229 patients (male, 72.1%). Vegetations ≥1 cm were detected in six patients. Locking Stylets were applied for 398 (90.5%) leads. Telescoping dilator polypropylene sheaths and counter traction technique were used for 202 (45.9%) leads due to lead adhesion, and the mean implant duration of the 202 leads was longer than the other 238 leads (48.9±22.6 vs. 26.6±17.8 months; P <0.01). In addition, modified isolation and snare techniques were used for 56 leads (12.7%). Minor and major procedure-related complications occurred in three (1.3%) and four (1.7%) cases respectively, including one death (0.4%). Severe lead residue occurred in one case. Complete procedural success rate was 96.1% (423/440), and clinical success rate was 98.9% (435/440). The median follow-up period was 18 (1–76) months. No infection- and procedure-related death occurred in our series. Our data demonstrated that high clinical success rate of transvenous lead extraction can be guaranteed by making full use of the standard lead extraction techniques and equipment with individualized modifications.

  • Zhao-dong Zhong , Lei Li , Yao-hui Wu , Yong You , Wei-ming Li , Ping Zou

    The clinical characteristics of patients with seizures after allogeneic hematopoietic stem cell transplantation (allo-HSCT) were analyzed. A total of 8 cases of seizures after allo-HSCT were investigated. Clinical data of these cases were studied retrospectively. Of 159 cases subjected to allo-HSCT, seizure occurred in 8 cases during 29–760 days after transplantation, median survival time was 46 days, and there were 6 cases of tonic-clonic seizure. The incidence of seizure after matched unrelated HSCT was higher than that after related HSCT (P=0.017). Of 7 cases treated with cyclosporine A (CsA), 4 cases obtained high blood levels of CsA. In addition, hyponatremia was diagnosed in 5 cases. Abnormal electroencephalogram and brain MRI findings were found in some cases. During 20 days after seizure, 2 cases died due to infection and graft-versus-host disease (GVHD), respectively. It was suggested that multiple factors are associated with seizures after allo-HSCT. Rapid identification and correction of the causative factors are very important to prevent permanent central nervous system damage and reduce the mortality.

  • Xia Yang , Yu Fu , Jun Liu , Hong-yu Ren

    Toll-like receptors (TLRs) are key components of the innate immune system which trigger antimicrobial host defense responses. This study aimed to investigate the impact of probiotics (Lactobacillus, Bifiidobacterium) on the expression of TLR4 and tumor necrosis factor-alpha (TNF-α) in the colon mucosa of rat experimental ulcerative colitis model induced by trinitrobenzene sulfonic acid (TNBS)/ethanol and immune complexes. The gross and histological changes of the colonic mucosa were observed and assessed by the means-standard deviation and independent samples t-test. The protein expression levels of TLR4 and TNF-α were detected by using immunohistochemistry and Western blotting, respectively. It was revealed that there was visible infiltration of inflammatory cells, formation of crypt abscess, and the reduction of goblet cells in the colon tissue of experimental models. As compared with the control group, the levels of TLR4 and TNF-α protein were significantly increased in the model group (P<0.01 for both). No significant difference was found in the expression of TLR4 and TNF-α between the two-week probiotics treatment group and the model group (P>0.05), whereas significant reductions were shown in rats which were treated with probiotics for four weeks as compared with the model group (P<0.01). There was no significant difference between two probiotics-treated groups. Our results implied that probiotics were likely to play a key role in protecting ulcerative colitis by reducing the inflammatory factor TNF-α expression through inhibiting the TLR4 expression in the colon tissue of experimental models.

  • Ju-mei Xia , Jun Zhang , Wen-xiang Zhou , Xiao-cheng Liu , Min Han

    Curcumin, as a main pharmacological component in the traditional Chinese medicine—turmeric, has shown anti-inflammatory, anti-oxidation, anti-tumor and anti-fibrotic effects. This study aimed to investigate the possible underlying signaling pathway which was involved in the inhibition of LDL-induced proliferation of mesangial cells and matrix by curcumin. Rat mesangial cells in vitro were incubated with low-density lipoprotein (LDL) and different concentrations of curcumin (0, 6.25, 12.5, 25.0 μmol/L) or p38 MAPK inhibitor, SB203580 (10 μmol/L). Under LDL incubation, mesangial cells proliferated, the expression of MMP-2 mRNA and protein was decreased, the expression of COX-2 mRNA and protein was increased, reactive oxygen species (ROS) generation was increased and p38 MAPK was activated significantly (P<0.05). When LDL-induced cells were treated with curcumin in the concentration of 12.5 or 25.0 μmol/L, LDL-induced proliferation of mesangial cells was suppressed, the expression of MMP-2 mRNA and protein increased, the expression of COX-2 mRNA and protein downregulated, the production of ROS inhibited and p38 MAPK inactivated (P<0.05). In conclusion, curcumin can inhibit the LDL-induced proliferation of mesangial cells and up-regulate the expression of MMP-2, which may be related with the inhibitory effect of curcumin on COX-2 expression, ROS production and p38 MAPK.

  • Qiao-dan Zhou , Yong Ning , Rui Zeng , Lin Chen , Pei Kou , Chu-ou Xu , Guang-chang Pei , Min Han , Gang Xu

    Erbin, a member of Leucine-rich repeat and PDZ-containing protein family, was found to inhibit TGF-β-induced epithelial-mesenchymal transition (EMT) in our previous study. However, the mechanism of Erbin in regulating EMT is unclear. Semaphorin protein Sema4C, with PDZ binding site at C-terminal has been recognized as a positive regulator of EMT. Here, we aimed to examine the interaction between Erbin and Sema4C. HK2 cells were treated with TGF-β1, or transfected with Erbin and (or) Sema4C. Interaction of Erbin and Sema4C was identified by immunoprecipitation. RT-PCR was used to detect the expression of Erbin and Sema4C at mRNA level after transfection. The expression levels of Erbin, Sema4C, and markers of EMT were measured by using Western blotting or ELISA. After HK2 cells were stimulated with 10 ng/mL TGF-β1 for 72 h, the protein expression levels of Erbin and Sema4C were both up-regulated, and immunoprecipitation results showed Erbin interacted with Sema4C in HK2 cells both at endogenous and exogenous levels. Furthermore, overexpression of Sema4C suppressed E-cadherin, induced vimentin and promoted fibronectin secretion, indicating Sema4C promotes the process of EMT. However, HK2 cells overexpressing Erbin were resistant to Sema4C-induced EMT. In contrast, Erbin specific siRNA promoted EMT induced by Sema4C. Taken together, these results suggest that Erbin can interact with Sema4C, and co-expression of Erbin blocks the process of Sema4C-induced EMT.

  • Xiu-jiang Li , Guo-xing Zhang , Ni Sun , Yu Sun , Li-zhi Yang , Yu-jun Du

    The protective effect of erythropoietin (EPO) on tissues following ischemia and reperfusion injuries remains poorly understood. We aimed to investigate the effect of EPO in preventing endotoxin-induced organ damage. Rat model of multiple organ failure (MOF) was established by tail vein injection of 10 mg/kg lipopolysaccharide (LPS). Recombinant human EPO treatment (5000 U/kg) was administered by tail vein injection at 30 min after LPS challenge. Twenty-four h after EPO treatment, changes in serum enzyme levels, including aspartate aminotransferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN) and creatinine (Cr), were evaluated by biochemical analysis. Serum levels of tumor necrosis factor-α (TNF-α) were determined by using immunoradiometric assay. Histological examination of tissue sections was carried out by hematoxylin and eosin staining, while ultrastructure evaluation of organ tissues was assessed by transmission electron microscopy. Protein expression levels were detected by using Western blotting. EPO treatment showed a modest effect in preventing LPS-induced elevation of AST, ALT, BUN, Cr, and TNF-α levels, and in protecting against LPS-induced tissue degeneration and injured ultrastructure in the lung, liver, and kidney. Moreover, LPS promoted phosphorylation of alanine aminotransferase (AKT) and increased nuclear factor-κB (NF-κB) activation in the lung, liver, and kidney (P<0.05 vs. control). However, EPO treatment significantly decreased the LPS-induced pAKT up-regulation in these tissues (P<0.05 vs. LPS treatment alone). The present study demonstrates that EPO may play a protective role against LPS-induced MOF by reducing the inflammatory response and tissue degeneration, possibly via the phosphatidylinositol 3-kinase/AKT and NF-κB signaling pathways.

  • Feng Peng , Min Wang , Feng Zhu , Rui Tian , Cheng-jian Shi , Meng Xu , Xin Wang , Ming Shen , Jun Hu , Shu-you Peng , Ren-yi Qin

    Integrated resection of the pancreatic head is the most difficult step in radical pancreaticoduodenectomy (RPD) in patients with the portal vein (PV) and superior mesenteric vein (SMV) invasion or oppression by the tumor. This study introduced a new idea and skill named the “total arterial devascularization first” (TADF) technique and its applications in RPD. Three arterial blood supplies of pancreatic head were obstructed before dissection of veins. The critical steps included exposure of the anterior surface of the abdominal aorta (AA) by completely transecting neural and connective tissue between superior mesenteric artery (SMA) and pancreatic mesounsinate, and transection of the mesounsinate from the origin of SMA to the root of the celiac trunk. From January 2012 through May 2013, a total of 58 patients with PV/SMV invasion or oppression underwent RPD using this technique. The median operative time was 5.1 h (ranging 4.5–8.1 h). The median intraoperative blood loss was 450 mL (ranging 200–900 mL). No intraoperative and postoperative bleeding of pancreatic head region occurred. Among the 58 patients, 21 were subjected to vessel lateral wall angiectomy or angiorrhaphy, and 10 to angiectomy and end-to-end anastomosis. The incidence of postoperative bleeding, postoperative pancreatic fistula and biliary fistula was 5.2%, 6.8%, and 1.7%, respectively. No patients died 3 months after operation. The TADF technique is a new method for intricate RPD and could improve the security of surgery and reduce intraoperative bleeding, which is expected to become standardized surgical approach for RPD.

  • Wei Wu , Yang Dan , Shu-hua Yang , Cao Yang , Zeng-wu Shao , Wei-hua Xu , Jin Li , Xian-zhe Liu , Dong Zheng

    The purpose of this study was to investigate the repair of the osteoarthritis(OA)-induced cartilage injury by transfecting the new TGF-β3 fusion protein (LAP-MMP-mTGF-β3) with targeted therapy function into the bone marrow-derived mesenchymal stem cells (MSCs) in rats. The recombinant of pIRES-EGFP-MMP was constructed by combination of DNA encoding MMP enzyme cutting site and eukaryotic expression vector pIRES-EGFP. LAP and mTGF-β3 fragments were obtained from rat embryos by RT-PCR and inserted into the upstream and downstream of MMP from pIRES-EGFP-MMP respectively, so as to construct the recombinant plasmid of pIRES-EGFP-LAP-MMP-mTGF-β3. pIRES-EGFP-LAP-MMP-mTGF-β3 was transfected into rat MSCs. The genetically modified MSCs were cultured in medium with MMP-1 or not. The transfected MSCs were transplanted in the rat OA models. The OA animal models were surgically induced by anterior cruciate ligament transaction (ACLT). The pathological changes were observed under a microscope by HE staining, Alcian blue, Safranin-fast Green and graded by Mankin’s scale. pIRES-EGFP-LAP-MMP-mTGF-β3 was successfully constructed by means of enzyme cutting and sequencing, and the mTGF-β3 fusion protein (39 kD) was certified by Western blotting. Those genetically modified MSCs could differentiate into chondrocytes induced by MMP and secrete the relevant-matrix. The transfected MSCs could promote chondrogenesis and matrix production in rat OA models in vivo. It was concluded that a new fusion protein LAP-MMP-mTGF-β3 was constructed successfully by gene engineering, and could be used to repair the OA-induced cartilage injury.

  • Hong-tao Tian , Bo Zhang , Qing Tian , Yong Liu , Shu-hua Yang , Zeng-wu Shao

    It is widely known that hypoxia can promote chondrogenesis of human bone marrow derived mesenchymal stem cells (hMSCs) in monolayer cultures. However, the direct impact of oxygen tension on hMSC differentiation in three-dimensional cultures is still unknown. This research was designed to observe the direct impact of oxygen tension on the ability of hMSCs to “self assemble” into tissue-engineered cartilage constructs. hMSCs were cultured in chondrogenic medium (CM) containing 100 ng/mL growth differentiation factor 5 (GDF-5) at 5% (hypoxia) and 21% (normoxia) O2 levels in monolayer cultures for 3 weeks. After differentiation, the cells were digested and employed in a self-assembly process to produce tissue-engineered constructs under hypoxic and normoxic conditions in vitro. The aggrecan and type II collagen expression, and type X collagen in the self-assembled constructs were assessed by using immunofluorescent and immunochemical staining respectively. The methods of dimethylmethylene blue (DMMB), hydroxyproline and PicoGreen were used to measure the total collagen content, glycosaminoglycan (GAG) content and the number of viable cells in each construct, respectively. The expression of type II collagen and aggrecan under hypoxic conditions was increased significantly as compared with that under normoxic conditions. In contrast, type X collagen expression was down-regulated in the hypoxic group. Moreover, the constructs in hypoxic group showed more significantly increased total collagen and GAG than in normoxic group, which were more close to those of the natural cartilage. These findings demonstrated that hypoxia enhanced chondrogenesis of in vitro, scaffold-free, tissue-engineered constructs generated using hMSCs induced by GDF-5. In hypoxic environments, the self-assembled constructs have a Thistological appearance and biochemical parameters similar to those of the natural cartilage.

  • Yang Lin , Wen-jian Chen , Wen-tao Zhu , Feng Li , Huang Fang , An-min Chen , Wei Xiong

    The effect and safety of anterior debridement and fusion with a minimally invasive approach combined with posterior fixation via the Wiltse approach were assessed in the single-level lumbar pyogenic spondylodiscitis. Seventeen patients from 2007 to 2009 underwent anterior debridement and fusion with a minimally invasive approach combined with posterior fixation via the Wiltse approach. Postoperative follow-up time was 24–41 months. Data included the patients’ general information, microbiology, operative time, intraoperative blood loss, postoperative complications, intervertebral fusion rate, and preoperative and final follow-up scores for American Spinal Injury Association (ASIA) impairment, visual analogue scale (VAS), and Oswestry Disability Index (ODI). Ten patients had undergone a prior spinal invasive procedure, and 7 had hematogenous infection. The infected segments included L1–2, L2–3, L3–4, and L4–5 in 1, 2, 5, and 9 cases, respectively. Thirteen bacterial cultures were positive for Staphylococcus aureus (5 cases), Staphylococcus epidermidis (4), Streptococcus (3), and Escherichia coli (1). The operative time was 213.8±45.6 min, and the intraoperative blood loss was 180.6±88.1 mL. Postoperative complications consisted of urinary retention (2 cases), constipation (3), and deep vein thrombosis (2). On the final follow-up, VAS scores and ODIs were significantly lower than those of preoperation, while the ASIA grades improved. All the cases achieved good intervertebral bony fusion. Anterior debridement and fusion with a minimally invasive approach combined with posterior fixation via the Wiltse approach can successfully treat single-level lumbar pyogenic spondylodiscitis, with less trauma and reliable immobilization. It is a viable option for clinical application.

  • Yuan Bao , Hao Kang , Zi-yang Zhang , Ming-bo Nie , Feng-jin Guo

    The clinical results of the application of pedicled vascularized bone graft (VBG) from Lister’s tubercle vs. traditional bone graft (TBG) were evaluated and compared. Thirteen cases of symptomatic scaphoid nonunion were treated between January 2011 and December 2012, including 7 cases subject to VBG and the rest 6 cases to TBG, respectively. Outcomes were assessed by modified Mayo wrist score system. All cases were followed up for an average period of 3.5 months after operation. The results showed that total scores in VBG group were 86.4±9.4 after operation with excellent result in 4 cases, good in 2 and acceptable in one, and those in TBG group were 71.7±9.3 after operation with good result in 2 cases, acceptable in 3 and disappointing in one. Total score of wrist function was significantly improved in VBG group as compared with TBG group (P<0.05). Our study suggests that VBG method is more effective for treating scaphoid nonunion than TBG method.

  • Amal M. Banafa , Sadia Roshan , Yun-yi Liu , Hui-jie Chen , Ming-jie Chen , Guang-xiao Yang , Guang-yuan He

    Fucoidan is an active component of seaweed, which inhibits proliferation and induces apoptosis of several tumor cells while the detailed mechanisms underlying this process are still not clear. In this study, the effect of Fucoidan on the proliferation and apoptosis of human breast cancer MCF-7 cells and the molecular mechanism of Fucoidan action were investigated. Viable cell number of MCF-7 cells was decreased by Fucoidan treatment in a dose-dependent manner as measured by MTT assay. Fucoidan treatment resulted in G1 phase arrest of MCF-7 cells as revealed by flow cytometry, which was associated with the decrease in the gene expression of cyclin D1 and CDK-4. Annexin V/PI staining results showed that the number of apoptotic cells was associated with regulation of cytochrome C, caspase-8, Bax and Bcl-2 at transcriptional and translational levels. Both morphologic observation and Hoechst 33258 assay results confirmed the pro-apoptotic effect of Fucoidan. Meanwhile, the ROS production was also increased by Fucoidan treatment, which suggested that Fucoidan induced oxidative damage in MCF-7 cells. The results of present study demonstrated that Fucoidan could induce G1 phase arrest and apoptosis in MCF-7 cells through regulating the cell cycle and apoptosis-related genes or proteins expression, and ROS generation is also involved in these processes.

  • Jun Yu , Yong Zhou , Juan Gui , Ai-zhen Li , Xiao-ling Su , Ling Feng

    In order to assess the number and function of macrophages in the placenta of pregnancy complicated with gestational diabetes mellitus (GDM) as well as those of normal pregnancies, placenta samples were collected from 15 GDM patients (GDM group) and 10 normal pregnant women (control group). The expression levels of macrophage markers (CD68/CD14) and inflammatory cytokines (IL-6/TNF-α) in placenta were detected using immunohistochemistry and PCR. The results showed that the number of CD68+ or CD14+ cells in the GMD group was remarkably higher than that in the control group (P<0.05), indicating that the number of macrophages in the GDM group was significantly greater than that in the control group. The mRNA expression levels of CD68+, IL-6 and TNF-α were higher in the GMD group than in the control group. In conclusion, more macrophages accumulate in placenta of pregnancy complicated with GDM, and the expression levels of pro-inflammation factors are also increased in GDM pregnancies, suggesting that macrophages and inflammatory mediators (IL-6 and TNF-α) may play an important role in GDM.

  • Ying Zhu , Min Wu , Chao-ying Wu , Ge-qing Xia

    The role of progesterone in the Toll-like receptor 4 (TLR4)-MyD88-dependent signaling pathway in pre-eclampsia was studied. Peripheral blood mononuclear cells (PBMCs) from pre-eclampsia (PE) patients were subjected to primary culture, and stimulated with different concentrations of progesterone (0, 10−8, 10−6, and 10−4 mol/L). The mRNA expression of TLR4, MyD88 and nuclear factor-kappaB (NF-κB) was detected by using real-time PCR. The Ikappa-B protein expression was detected by using Western blotting. The expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the supernatant was determined by using ELISA. With the concentrations of progesterone increasing, the mRNA expression levels of TLR4, MyD88 and NF-κB in 2−ΔΔCT value were significantly decreased, and the IkappaB protein expression levels were significantly increased. The TNF-α and IL-6 expression showed a downward trend when the progesterone concentration increased, and there were significant differences among all of the groups (P<0.05). It was suggested that progesterone can inhibit the TLR4-MyD88-dependent signaling pathway in PE significantly and benefit for the pregnancy.

  • Shu-jie Liao , Dong-rui Deng , Dan Zeng , Ling Zhang , Xiao-ji Hu , Wei-na Zhang , Li Li , Xue-feng Jiang , Chang-yu Wang , Jian-feng Zhou , Shi-xuan Wang , Han-wang Zhang , Ding Ma

    Human papillomavirus (HPV)-induced cervical cancer is the second most common cancer among women worldwide. Despite the encouraging development of the preventive vaccine for HPV, a vaccine for both prevention and therapy or pre-cancerous lesions remains in high priority. Thus far, most of the HPV therapeutic vaccines are focused on HPV E6 and E7 oncogene. However these vaccines could not completely eradicate the lesions. Recently, HPV E5, which is considered as an oncogene, is getting more and more attention. In this study, we predicted the epitopes of HPV16 E5 by bioinformatics as candidate peptide, then, evaluated the efficacy and chose an effective one to do the further test. To evaluate the effect of vaccine, rTC-1 (TC-1 cells infected by rAAV-HPV16E5) served as cell tumor model and rTC-1 loading mice as an ectopic tumor model. We prepared vaccine by muscle injection. The vaccine effects were determined by evaluating the function of tumor-specific T cells by cell proliferation assay and ELISPOT, calculating the tumor volume in mice and estimating the survival time of mice. Our in vitro and in vivo studies revealed that injection of E5 peptide+CpG resulted in strong cell-mediated immunity (CMI) and protected mice from tumor growth, meanwhile, prolonged the survival time after tumor cell loading. This study provides new insights into HPV16 E5 as a possible target on the therapeutic strategies about cervical cancer.

  • San-qing Xu , Xu-fang Li , Hui-yun Zhu , Yan Liu , Feng Fang , Ling Chen

    The aim of this study was to assess the clinical efficacy and safety of chelation treatment with penicillamine (PCA) in cross combination with sodium 2, 3-dimercapto-1-propane sulfonate (DMPS) repeatedly in patients with Wilson’s disease (WD). Thirty-five patients with WD were enrolled. They were administrated intravenous DMPS in cross combination with oral PCA alternately which was practiced repeatedly, all with Zinc in the meantime. During the treatment, clinical observations and 24-h urine copper excretion as well as adverse effects of medicines were recorded and analyzed. Although the incidence of adverse effects was not significantly different after either intravenous DMPS or oral PCA treatment, levels of 24-h urine copper tended to be higher after short-term intravenous DMPS than that of oral PCA. Adverse effects in the course of intravenous DMPS were mainly neutropenia, thrombocytopenia, allergic reaction and bleeding tendency. As compared with oral PCA alone or intravenous DMPS alone, such repeated cross combination treatment could as much as possible avoid continued drug adverse effects or poor curative effect and had less chance to stop treatment in WD patients. Improved or recovered liver function in 71% of the patients, alleviated neurologic symptoms in 50% of the patients, and disappeared hematuria in 70% of the patients could be observed during the follow-up period of 6 months to 5 years after such combined chelation regimen. Chelation treatment repeatedly with oral penicillamine in cross combination with intravenous DMPS alternately could be more beneficial for WD patients to relieve symptoms, avoid continued drug adverse effects and maitain lifelong therapy.

  • Jun Ying , Zheng Yan , Xiao-rong Gao

    The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (≤40 Hz) emanate mostly from central structures of the brain, and responses from high rates (≥80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30–90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed reduction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic.

  • Wei Shi , Zhan-jie Zhang , Yin Yuan , En-ming Xing , You Qin , Zhen-jun Peng , Zhi-ping Zhang , Kun-yu Yang

    The purpose of this study was to develop docetaxel-poly (lactide-co-glycolide) (PLGA) loaded nanoparticles by using nanoprecipitation method and optimize the relative parameters to obtain nanoparticles with higher encapsulation efficiency and smaller size. The physicochemical characteristics of nanoparticles were studied. The optimized parameters were as follows: the oil phase was mixture of acetone and ethanol, concentration of tocopheryl polyethylene glycol succinate (TPGS) was 0.2%, the ratio of oil phase to water phase was 1:5, and the theoretical drug concentration was 5%. The optimized nanoparticles were spherical with size between 130 and 150 nm. The encapsulation efficiency was (40.83±2.1)%. The in vitro release exhibited biphasic pattern. The results indicate that docetaxel-PLGA nanoparticles were successfully fabricated and may be used as the novel vehicles for docetaxel, which would replace Taxotere® and play great roles in future.

  • Hong Ma , Jun Han , Tao Zhang , Yang Ke

    The purpose of this study was to compare the dose distribution of intensity-modulated radiotherapy (IMRT) in 7 and 5 fields as well as 3-D conformal radiotherapy (3D-CRT) plans for gastric cancer using dosimetric analysis. In 15 patients with gastric cancer after D1 resection, dosimetric parameters for IMRT (7 and 5 fields) and 3D-CRT were calculated with a total dose of 45 Gy (1.8 Gy/day). These parameters included the conformal index (CI), homogeneity index (HI), maximum dose spot for the planned target volume (PTV), dose-volume histogram (DVH) and dose distribution in the organs at risk (OAR), mean dose (Dmean), maximal dose (Dmax) in the spinal cord, percentage of the normal liver volume receiving more than 30 Gy (V30) and percentage of the normal kidney volume receiving more than 20 Gy (V20). IMRT (7 and 5 fields) and 3D-CRT achieved the PTV coverage. However, IMRT presented significantly higher CI and HI values and lower maximum dose spot distribution than 3D-CRT (P=0.001). For dose distribution of OAR, IMRT had a significantly lower Dmean and Dmax in spinal cord than 3D-CRT (P=0.009). There was no obvious difference in V30 of liver and V20 of kidney between IMRT and 3D-CRT, but 5-field IMRT showed lower Dmean in the normal liver than other two plans (P=0.001). IMRT revealed favorable tumor coverage as compared to 3D-CRT and IMRT plans. Specifically, 5-field IMRT plan was superior to 3D-CRT in protecting the spinal cord and liver, but this superiority was not observed in the kidney. Further studies are needed to compare differences among the three approaches.

  • Hong-yun Liu , You-bin Deng , Kun Liu , Yang Li , Qiao-ying Tang , Xiang Wei , Sheng Chang , Xia Lu

    Three-dimensional speckle tracking echocardiography was employed to evaluate the changes of left ventricular systolic strain in 23 heart transplant recipients at 1st, 3rd, 6th and 12th month after heart transplantation, and 23 healthy subjects served as controls. The three-dimensional full-volume echocardiographic images of left ventricle were recorded and then were analyzed using EchoPAC software. The strain curves and peak systolic strain values for each segment and overall left ventricular wall were obtained. Left ventricular global peak longitudinal strain (GPSL), global peak radial strain (GPSR), global peak circumferential strain (GPSC) and global peak area strain (GPSA) were measured and then statistically analyzed. There were no significant differences in left ventricular ejection fraction (LVEF) and cardiac output (CO) between heart transplant recipients and controls. The GPSL in heart transplant recipients at 1st month after surgery was significantly lower than that in controls, but close to the normal value at 3rd month after surgery and later. The GPSC, GPSA and GPSR were significantly lower in heart transplant recipients at 1st, 3rd, 6th and 12th month after surgery than those in controls. It is suggested that three-dimensional speckle tracking echocardiography can be used for monitoring changes of left ventricular systolic strains and evaluating left ventricular systolic function in cardiac allograft.

  • Yan-xia Zhao , Chen Cheng , Fang Zhu , Hong-ge Wu , Jing-hua Ren , Wei-hong Chen , Jing Cheng

    This study explored the role of radiation-induced autophagy in low-dose hyperradiosensitivity (HRS) in the human lung cancer cell line A549. A549 cells, either treated with an autophagic inhibitor 3-methyladenine (3-MA), or with a vehicle control, were irradiated at different low doses (≤0.5 Gy). The generation of autophagy was examined by laser scanning confocal microscopy. Western blotting was used to detect the expression of microtubule-associated protein l light chain 3B II (LC3B-II). Flow cytometry (FCM) and clonogenic assays were used to measure the fraction of surviving cells at the low irradiation doses. Our results showed that there was a greater inhibition of autophagic activity, but a higher degree of low-dose HRS in A549 cells treated with 3-MA than in control group. Our data demonstrated that radiation-induced autophagy is correlated with HRS in A549 cells, and is probably one of the mechanisms underlying HRS.

  • Zheng Huang , Zhi Chen

    This study describes the details of how to construct a three-dimensional (3D) finite element model of a maxillary first premolar tooth based on micro-CT data acquisition technique, MIMICS software and ANSYS software. The tooth was scanned by micro-CT, in which 1295 slices were obtained and then 648 slices were selected for modeling. The 3D surface mesh models of enamel and dentin were created by MIMICS (STL file). The solid mesh model was constructed by ANSYS. After the material properties and boundary conditions were set, a loading analysis was performed to demonstrate the applicableness of the resulting model. The first and third principal stresses were then evaluated. The results showed that the number of nodes and elements of the finite element model were 56 618 and 311801, respectively. The geometric form of the model was highly consistent with that of the true tooth, and the deviation between them was −0.28%. The loading analysis revealed the typical stress patterns in the contour map. The maximum compressive stress existed in the contact points and the maximum tensile stress existed in the deep fissure between the two cusps. It is concluded that by using the micro-CT and highly integrated software, construction of the 3D finite element model with high quality will not be difficult for clinical researchers.

  • Chun-lei Xun , Hong Zhao , Xiang-long Zeng , Xing Wang

    The aim of this retrospective study was to quantitatively evaluate the treatment effects of intrusion of overerupted maxillary molars using miniscrew implant anchorage and to investigate the apical root resorption after molar intrusion. The subjects included 30 patients whose average ages were 35.5±9.0 years. All patients had received intrusion treatments for overerupted maxillary molars with miniscrew anchorage. There were 38 maxillary first molars and 26 maxillary second molars to be intruded. Two miniscrews were inserted in the buccal and palatal alveolar bone mesial to the overerupted molar. Force of 100–150 g was applied by the elastic chains between screw head and attachment on each side. Lateral cephalograms and panoramic radiographs taken before and after intrusion were used to evaluate dental changes and root resorption of molars. Only 6 of the 128 miniscrews failed. The first and second molars were significantly intruded by averages of 3.4 mm and 3.1 mm respectively (P<0.001). The average intrusion time was more than 6 months. The crown of the molars mesially tilted by averages of 3.1 degrees and 3.3 degrees (P<0.001) for first and second molars. The amounts of root resorption were 0.2–0.4 mm on average. The intrusion treatment of overerupted molars with miniscrew anchorages could be used as an efficient and reliable method to recover lost restoration space for prosthesis. Radiographically speaking, root resorption of molars was not clinically significant after application of intrusive forces of 200 to 300 g.

  • Xiao-meng He , Ying Zhou , Jie Li , San-lan Wu , Meng-meng Jia , Ming-zhou Liu , Hui Chen , Ke Chen , Sheng-feng Li , Yao-hua Wang , Wei-yong Li

    The combined use of batifiban, a synthetic platelet GPII b/ IIIa receptor antagonist, and antithrombin agents is an attractive option for the treatment of patients with non-ST-segment elevation (NSTE) acute coronary syndrome (ACS) and those scheduled for percutaneous coronary intervention. To observe whether antithrombin agents affect the pharmacokinetic and pharmacodynamic properties of batifiban in combination therapy and optimize clinical administration dosage of batifiban, an open-label and parallel study was conducted. Thirty healthy subjects were randomly divided into three groups, which were sequentially treated with batifiban alone, or oral coadministration of clopidogrel, aspirin and UFH, or batifiban coadministered with these antithrombin agents. Blood samples were collected at pre-specified time points. The evaluation index included the inhibition of platelet aggregation and pharmacokinetic parameters. The pharmacokinetic parameters of batifiban and batifiban coadministered with antithrombin agents showed no significant differences. The mean inhibition rate of platelet aggregation (%) suggested that neither batifiban alone nor antithrombin agents alone could provide such potent inhibition rate (>80%) to obtain the best clinical efficacy, but they had a synergistic effect on platelet inhibition. No serious adverse effects were observed. The results in these healthy subjects suggest that batifiban coadministrated with antithrombin agents could achieve optimum clinical treatment effect for patients with NSTE ACS, and also those scheduled for percutaneous coronary intervention.