2024-05-20 2024, Volume 3 Issue 5

  • Select all
  • PERSPECTIVE
    Yi He , Wenxu Shang , Peng Tan
    2024, 3(5): 773-780. https://doi.org/10.1002/cnl2.164

    Since the beginning of the new century, the objectives of deep space exploration missions targeting celestial bodies such as the Moon and Mars shift from “understanding celestial bodies” to “utilizing celestial bodies.” With respect to the successful operation of various load missions, secondary battery systems play a crucial role in supplying energy. However, unlike terrestrial environment, extremely harsh extraterrestrial conditions, including extreme temperatures and radiation, severely limit the application of batteries in deep spaces. This work covers recent advancements in batteries, including electrolyte/electrode optimization strategies and thermal management under extreme low- and high-temperature conditions and the mechanism analysis of key battery components under radiation environments. Finally, perspectives are given on the remaining challenges posed by battery applications in extreme deep space environment.

  • RESEARCH ARTICLE
    Pengjun Ma , Yan Wang , Xu Zhang , Junwei Lang , Juan Yang , Tongtong Yu , Liqiang Chai , Bingjun Yang , Yanan Deng , Xianfeng Fan , Joonho Bae
    2024, 3(5): 781-797. https://doi.org/10.1002/cnl2.166

    The conversion of solar-thermal (ST) power into electrical power along with its efficient storage represents a crucial and effective approach to address the energy crisis. The thermoelectric (TE) generator can absorb ST power and transform it into electrical energy, making it a highly viable technology to achieve photo-thermal conversion (PTC). However, the practical application of the pristine TE generator devices on a larger scale is still facing several challenges. On the one hand, the pristine TE generator device has low inherent PTC efficiency, thereby leading to low power conversion. On the other hand, such solar-thermoelectric (STE) conversion does not provide the functionality of electric energy storage. Herein, an effective strategy has been proposed that employs a CoAl2O4 PTC coating to decorate the pristine TE generator for developing the STE generator device with the remarkable STE performance and then coupling this device with a supercapacitor (SC) for effective storage power. In comparison to the pristine TE generator, the developed STE device exhibited considerable enhancement in both the open-circuit voltage (Voc) and its maximum power density, displaying more than a 4- and 15-fold improvement, respectively. In addition, the feasibility of coupling this solar-driven STE generator device in series with a SC for ST conversion and storage was verified, and the working mechanism has been elucidated. This work presents a promising approach to effectively convert and store clean solar power into electrical energy, enabling practical applications of STE generator devices in conjunction with other electrochemical energy storage devices.

  • REVIEW
    Yitong Wang , Yuhua Wang
    2024, 3(5): 798-817. https://doi.org/10.1002/cnl2.165

    The addition of two-dimensional MXene materials gives microsupercapacitors (MSCs) the advantages of higher power density, faster charging and discharging speeds, and longer lifetimes. To date, various fabrication methods and strategies have been used to finely synthesize MXene electrodes. However, different technologies not only affect the electrode structure of MXene but also directly affect the performance of MSCs. Here, we provide a comprehensive and critical review of the design and microfabrication strategies for MXene’s fork-finger microelectrodes. First, we provide a systematic overview of micromachining techniques applied to MXene, including graphic cutting, screen-printing, 3D printing, inkjet, and stamp methods. In addition, we discuss in detail the advantages and disadvantages of these machining techniques, summarizing the environment in which the technique is used and the results expected to be achieved. Finally, the challenges as well as the outlook for future applications are summarized to promote the further development of MXene materials in the field of MSCs.

  • RESEARCH ARTICLE
    Miao Yan , Qi Fang , Rui Ding , Yi Li , Jian Guo , Jinmei Xie , Yuzhen Zhang , Yuming He , Ziyang Yan , Zhiqiang Chen , Xiujuan Sun , Enhui Liu
    2024, 3(5): 818-831. https://doi.org/10.1002/cnl2.163

    To unveil the charge storage mechanisms and interface properties of electrode materials is very challenging for Na-ion storage. In this work, we report that the novel layered perovskite Bi2TiO4F2@reduced graphene oxides (BTOF@r-GO) serves as a promising anode for Na-ion storage in an ether-based electrolyte, which exhibits much better electrochemical performance than in an ester-based electrolyte. Interestingly, BTOF@rGO possesses a prominent specific capacity of 458.3–102 mAh g–1/0.02–1 Ag–1 and a high initial coulombic efficiency (ICE) of 70.3%. Cross-sectional morphology and depth profile surface chemistry indicate not only a denser reactive interfacial layer but also a superior solid electrolyte interface film containing a higher proportion of inorganic components, which accelerates Na+ migration and is an essential factor for the improvement of ICE and other electrochemical properties. Electrochemical tests and ex situ measurements demonstrate the triple hybridization Na-ion storage mechanism of conversion, alloying, and intercalation for BTOF@rGO in the ether-based electrolyte. Furthermore, the Na-ion batteries assembled with the BTOF@rGO anode and the commercial Na3V2(PO4)2F3@C cathode exhibit remarkable energy densities and power densities. Overall, the work shows deep insights on developing advanced electrode materials for efficient Na-ion storage.

  • REVIEW
    Zhengwei Xu , Kangwei Song , Xinyue Chang , Li Li , Weicheng Zhang , Yixun Xue , Jiahui Zhang , Dewu Lin , Zheyuan Liu , Qian Wang , Yan Yu , Chengkai Yang
    2024, 3(5): 832-856. https://doi.org/10.1002/cnl2.162

    Layered oxide materials are widely used in the field of energy storage and conversion due to their high specific energy, high efficiency, long cycle life, and high safety. Herein, We summarize the latest research progress in the field of layered metal oxide cathode materials from three aspects: challenges faced, failure mechanisms, and modification methods. We also compare the characteristics of lithium-based layered oxides and sodium-based layered oxides, and predict future development directions. The layered oxide cathode materials for sodium-ion batteries and lithium-ion batteries exhibit overall structural and operational similarities. There are also some differences, such as lattice parameters and application extent. Sodium-ion battery cathode materials need to explore new materials and address structural instability issues, while lithium-ion batteries require finding alternative materials and improving production efficiency. Future challenges for both types of materials include enhancing capacity and cycle performance, elucidating deep mechanisms, reducing costs, and improving resource sustainability. Future development should focus on balancing cycle stability and charge cut-off voltage to meet the growing demand for battery applications.

  • RESEARCH ARTICLE
    Gang Wu , Yuanhang Gao , Zheng Weng , Zhicheng Zheng , Wenqiang Fan , Anqiang Pan , Ning Zhang , Xiaohe Liu , Renzhi Ma , Gen Chen
    2024, 3(5): 857-872. https://doi.org/10.1002/cnl2.158

    Silicon oxide (SiOx) is heralded as the forefront anode material for high-energy density lithium-ion batteries, owing to its exceptional specific capacity. Nevertheless, the traditional combination of polyacrylic acid binder and acetylene black conductive carbon continues to struggle with the immense stress induced by the repetitive volume expansion and contraction processes. Here we report a high ionic conductivity, sulfonyl fluoro-containing binder for SiOx anode via free radical copolymerization reaction between perfluoro (4-methyl-3,6-dioxaoct-7-ene) sulfonyl fluoride and acrylic acid. The electrode fabrication process incorporated amino-functionalized carbon nanotubes (CNT-NH2) as the conductive agent. A three-dimensional conductive network structure is constructed through physical and chemical double cross-linking interactions between the -COOH and -SO2F functional groups of PAF0.1 binder, the -NH2 groups of CNT-NH2, and the -OH groups on the surface of SiOx, including hydrogen bonds and covalent bonds. In addition, the binder induces the formation of a solid electrolyte interphase (SEI) rich in inorganic components such as Li2O, Li2SO3, Li2CO3, and LiF. Benefiting from the synergistic effects of the physically and chemically double cross-linked three-dimensional conductive network constructed by the PAF0.1 binder and CNT-NH2, coupled with the rich-inorganic SEI, the SiOx anode delivers exceptional rate performance, cycle stability, and lithium-ion diffusion dynamics.

  • RESEARCH ARTICLE
    Yikun Cheng , Pengjie Fu , Zhipeng Yu , Xiaodong Yang , Yangrui Zhang , Aojie Yuan , Huan Liu , Jianhao Du , Long Chen
    2024, 3(5): 873-887. https://doi.org/10.1002/cnl2.157

    Photoelectrically coupling water splitting at high current density is a promising approach for the acquisition of green hydrogen energy. However, it places significant demands on the photo/electrocatalysts. Herein, rare earth elements doping NiMoO4-based phosphorus/sulfide heterostructure nanorod arrays (RENiMo-PS@NF [RE=Y, Er, La, and Sc]) are obtained for solar-enhanced electrocatalytic water splitting at high current densities. The results of the experiment and density-functional theory studies illustrate that the Y element as a dopant not only makes the NiMoP2/NiMo3S4/NiMoO4 heterostructure exhibit excellent solar-enhanced electrocatalytic activity (hydrogen evolution reaction [HER]: η1000= 211 mV, oxygen evolution reaction [OER]: η1000=367 mV) but also optimizes the heterostructure interfacial electron density distributions and HER free energy. In addition, Y-NiMo-PS@NF achieves 18.64% solar-to-hydrogen efficiency. This study not only provides a new way to synthesize heterostructure electrocatalysts but also inspires the application of solar enhancement strategies for high current density water splitting.

  • RESEARCH ARTICLE
    Boyin Zhai , Jiarui He , Hongguan Li , Xinglong Li , Suvonkul Nurmanov , Olim Ruzimuradov , Ping Niu , Sangeun Chun , Shulan Wang , Li Li
    2024, 3(5): 888-903. https://doi.org/10.1002/cnl2.154

    Sufficient utilization of visible-light generated charge carriers in proton reduction reactions is of great significance for the development of effective solar-fuel technologies. Achieving simultaneous bulk rapid transfer and surface efficient extraction of charge carriers is still very challenging. Herein, it is found for the first time ammonium persulfate (APS) can significantly influence polymerization processes of C3N4 (CN) from melamine to poly (heptazine imide) (PHI) under the simultaneous oxygen doping and etching effect of SO42–. PHI with high crystallinity, porous structure, and in-situ oxygen doping was therefore obtained through one-step APS-assisted salt strategy. Benefiting from sufficient visible-light absorption and upshifted conduction band originating from regulated electronic structure and optimized morphology through APS modification, the as-prepared PHI achieved a H2 evolution activity of 3274.23 µmol h–1 g–1 (λ > 420 nm), which is appropriately 148 and 19 times that of conventional and crystalline CN. This work opens up new opportunities for efficient photocatalysis.

  • RESEARCH ARTICLE
    Wenhao Yang , Tong Chen , Luzhen Xie , Yang Yu , Mengqiu Long , Liang Xu
    2024, 3(5): 904-917. https://doi.org/10.1002/cnl2.156

    Two-dimensional materials exhibit significant potential and wide-ranging application prospects owing to their remarkable tunability, pronounced quantum confinement effects, and notable surface sensitivity. The switching, optoelectronics, and gas-sensitive properties of the new carbon material poly-cyclooctatetraene framework (PCF)-graphene were systematically studied using density functional theory combined with the nonequilibrium Green’s function method. First, the diode device based on PCF-graphene monolayer exhibited an impressive switching ratio of 106, demonstrating excellent diode characteristics. Moreover, in the investigation of the pin junction utilizing monolayer PCF-graphene, it is noteworthy that significant photocurrent responses were observed in both the zigzag and armchair directions, specifically within the visible and ultraviolet regions. Finally, gas sensors employing monolayer and bilayer PCF-graphene demonstrate significant chemical adsorption capabilities for NO and NO2. Notably, the maximum gas sensitivity for NO is achieved in monolayer PCF-graphene, reaching 322% at a bias voltage of 1.0 V. Meanwhile, for bilayer PCF-graphene-based gas sensor, the maximum gas sensitivity reaches 52% at a bias voltage of 0.4 V. In addition, the study also examined the influence of various environmental conditions, specifically H2O, O, and OH, on the system under investigation. The obtained results emphasize the multifunctional properties of PCF-graphene, exhibiting significant potential for various applications, including switching devices, optoelectronic devices, and gas sensors.

  • REVIEW
    Yuwei Zhao , Xinyu Chen , Weina Guo , Chenyang Zha
    2024, 3(5): 918-949. https://doi.org/10.1002/cnl2.155

    Aqueous rechargeable zinc–iodine batteries have gained traction as a promising solution due to their suitable theoretical energy density, costeffectiveness, eco-friendliness, and safety features. However, challenges such as the polyiodide shuttle effect, low iodine cathode conductivity, zinc anode dendritic growth, and the requirement for efficient separators and electrolytes hinder their commercial prospects. Hence, this review highlights recent progress in refining the core optimization strategies of zinc–iodine batteries, focusing on enhancements to the cathode, anode, separator, and electrolyte. Cathode improvements involve the addition of inorganic, organic, and hybrid materials to counteract the shuttle effect and boost redox kinetics, where these functional materials also are applied in anode modifications to curb dendritic growth and enhance cycling stability. Meanwhile, cell separator design approaches that effectively block polyiodide shuttle while promoting uniform zinc deposition are also discussed, while electrolyte innovations target zinc corrosion and polyiodide dissolution. Ultimately, the review aims to map out a strategy for developing zinc–iodine batteries that are efficient, safe, and economical, aligning with the demands of contemporary energy storage.