A novel design for conversion and storage of solar thermal energy into electrical energy using a solar thermoelectric device-coupled supercapacitor

Pengjun Ma , Yan Wang , Xu Zhang , Junwei Lang , Juan Yang , Tongtong Yu , Liqiang Chai , Bingjun Yang , Yanan Deng , Xianfeng Fan , Joonho Bae

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (5) : 781 -797.

PDF (5884KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (5) : 781 -797. DOI: 10.1002/cnl2.166
RESEARCH ARTICLE

A novel design for conversion and storage of solar thermal energy into electrical energy using a solar thermoelectric device-coupled supercapacitor

Author information +
History +
PDF (5884KB)

Abstract

The conversion of solar-thermal (ST) power into electrical power along with its efficient storage represents a crucial and effective approach to address the energy crisis. The thermoelectric (TE) generator can absorb ST power and transform it into electrical energy, making it a highly viable technology to achieve photo-thermal conversion (PTC). However, the practical application of the pristine TE generator devices on a larger scale is still facing several challenges. On the one hand, the pristine TE generator device has low inherent PTC efficiency, thereby leading to low power conversion. On the other hand, such solar-thermoelectric (STE) conversion does not provide the functionality of electric energy storage. Herein, an effective strategy has been proposed that employs a CoAl2O4 PTC coating to decorate the pristine TE generator for developing the STE generator device with the remarkable STE performance and then coupling this device with a supercapacitor (SC) for effective storage power. In comparison to the pristine TE generator, the developed STE device exhibited considerable enhancement in both the open-circuit voltage (Voc) and its maximum power density, displaying more than a 4- and 15-fold improvement, respectively. In addition, the feasibility of coupling this solar-driven STE generator device in series with a SC for ST conversion and storage was verified, and the working mechanism has been elucidated. This work presents a promising approach to effectively convert and store clean solar power into electrical energy, enabling practical applications of STE generator devices in conjunction with other electrochemical energy storage devices.

Keywords

CoAl 2O 4 spinel / photo-thermal conversion / power conversion and storage / solar thermoelectric device / supercapacitor

Cite this article

Download citation ▾
Pengjun Ma, Yan Wang, Xu Zhang, Junwei Lang, Juan Yang, Tongtong Yu, Liqiang Chai, Bingjun Yang, Yanan Deng, Xianfeng Fan, Joonho Bae. A novel design for conversion and storage of solar thermal energy into electrical energy using a solar thermoelectric device-coupled supercapacitor. Carbon Neutralization, 2024, 3(5): 781-797 DOI:10.1002/cnl2.166

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. J. Davidson, Nat. Energy 2019, 4, 254.

[2]

B. Lu, M. Yang, M. Ding, S. Yan, W. Xiang, Y. Cheng, H. Fu, Z. Xu, C. Jia, SusMat 2023, 3, 522.

[3]

Y. Zhao, J. Li, Y. Tan, C. Zhu, Y. Chen, Carbon Neutralization 2024, 3, 32.

[4]

S. Pi, W. Yang, W. Feng, R. Yang, W. Chao, W. Cheng, L. Cui, Z. Li, Y. Lin, N. Ren, C. Yang, L. Lu, X. Gao, Nature Sustainability 2023, 6, 1673.

[5]

L. Liu, G. He, M. Wu, G. Liu, H. Zhang, Y. Chen, J. Shen, S. Li, Nat. Energy 2023, 8, 870.

[6]

H. Zhang, Y. H. Cheng, D. G. Lek, T. Y. Liu, F. Lin, W. Luo, S. Q. Huang, M. Q. Gao, X. Wang, Y. F. Zhi, Q. Wang, J. Power Sources 2022, 548, 232081.

[7]

H. C. Ma, C. C. Zhao, G. J. Chen, Y. B. Dong, Nat. Commun. 2019, 10, 3368.

[8]

D. X. Xu, Z. D. Li, L. S. Li, J. Wang, Adv. Funct. Mater. 2020, 30, 2000712.

[9]

M. Zhao, T. Chen, B. He, X. Hu, J. Huang, P. Yi, Y. Wang, Y. Chen, Z. Li, X. Liu, J. Mater. Chem. A 2020, 8, 15976.

[10]

F. Cao, K. McEnaney, G. Chen, Z. Ren, Energy Environ. Sci. 2014, 7, 1615.

[11]

C. Y. He, P. Zhao, H. Zhang, K. Chen, B. H. Liu, Z. W. Lu, Y. Li, P. Q. La, G. Liu, X. H. Gao, Adv. Sci. 2023, 10, 2204817.

[12]

L. Noč, I. Jerman, Sol. Energy Mater. Sol. Cells 2022, 238, 111625.

[13]

X. Hu, J. Huang, F. Zhao, P. Yi, B. He, Y. Wang, T. Chen, Y. Chen, Z. Li, X. Liu, J. Mater. Chem. A 2020, 8, 14915.

[14]

A. Amri, Z. T. Jiang, T. Pryor, C. Y. Yin, S. Djordjevic, Renew. Sustain. Energy Rev. 2014, 36, 316.

[15]

A. Zakutayev, J. Mater. Chem. A 2016, 4, 6742.

[16]

M. S. Prasad, B. Mallikarjun, M. Ramakrishna, J. Joarder, B. Sobha, S. Sakthivel, Sol. Energy Mater. Sol. Cells 2018, 174, 423.

[17]

Q. Geng, X. Zhao, X. Gao, H. Yu, S. Yang, G. Liu, Sol. Energy Mater. Sol. Cells 2012, 105, 293.

[18]

Q. Geng, X. Zhao, X. Gao, S. Yang, G. Liu, J. Sol-Gel Sci. Technol. 2012, 61, 281.

[19]

I. Jerman, M. Mihelčič, D. Verhovšek, J. Kovač, B. Orel, Sol. Energy Mater. Sol. Cells 2011, 95, 423.

[20]

P. Ranganathan, V. Amrutha, H. C. Barshilia, Sol. Energy Mater. Sol. Cells 2021, 233, 111381.

[21]

J. Vince, A. Šurca Vuk, U.O. Krašovec, B. Orel, M. Köhl, M. Heck, Sol. Energy Mater. Sol. Cells 2003, 79, 313.

[22]

Q. F. Geng, X. Zhao, X. H. Gao, G. Liu, J. Am. Ceram. Soc. 2011, 94, 827.

[23]

S. R. Atchuta, S. Sakthivel, H. C. Barshilia, Sol. Energy Mater. Sol. Cells 2019, 200, 109917.

[24]

S. R. Atchuta, S. Sakthivel, H. C. Barshilia, Sol. Energy Mater. Sol. Cells 2019, 189, 226.

[25]

F. Gu, W. G. Guo, Y. F. Yuan, Y. P. Deng, H. L. Jin, J. C. Wang, Z. W. Chen, S. Pan, Y. H. Chen, S. Wang, Adv. Mater. 2024, 36, 2313096.

[26]

P. Ma, Y. Sun, X. Zhang, J. Chen, B. Yang, Q. Zhang, X. Gao, X. Yan, Energy Storage Mater. 2019, 23, 159.

[27]

Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi, J. Chang, S. Hong, K. C. Ng, P. Wang, Joule 2018, 2, 1171.

[28]

W. G. Guo, F. Gu, Q. L. Chen, K. X. Fu, Y. Q. Zhong, J. J. Lv, S. Pan, Y. H. Chen, Carbon Energy 2024, e567.

[29]

D. E. Karas, J. Byun, J. Moon, C. Jose, Sol. Energy Mater. Sol. Cells 2018, 182, 321.

[30]

K. K. P Kumara, S. Mallick, S. Sakthivel, Renew. Energy 2023, 203, 334.

[31]

X. Zhang, S. Pan, H. Song, W. Guo, F. Gu, C. Yan, H. Jin, L. Zhang, Y. Chen, S. Wang, J. Mater. Chem. A 2021, 9, 19734.

[32]

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, G. Chen, Nat. Energy 2016, 1, 16153.

[33]

S. Ayachi, X. He, H. J. Yoon, Adv. Energy Mater. 2023, 13, 2300937.

[34]

X. Zhang, S. Pan, H. Song, W. Guo, S. Zhao, G. Chen, Q. Zhang, H. Jin, L. Zhang, Y. Chen, S. Wang, Front. Chem. 2021, 9, 677821.

[35]

D. Kraemer, B. Poudel, H. P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, G. Chen, Nat. Mater. 2011, 10, 532.

[36]

X. Zhang, W. Gao, X. Su, F. Wang, B. Liu, J. J. Wang, H. Liu, Y. Sang, Nano Energy 2018, 48, 481.

[37]

D. Yadav, P. Azad, R. Vaish, Glob. Chall. 2020, 4, 1900080.

[38]

X. Liu, Y. Zhu, Z. Lu, J. Xiao, G. Zou, H. Hou, X. Ji, Carbon Neutralization 2023, 2, 721.

[39]

J. Z. Feng, Y. Wang, Y. T. Xu, H. Y. Ma, G. W. Wang, P. J. Ma, Y. Tang, X. B. Yan, Adv. Mater. 2021, 33, 2100887.

[40]

Y. Liu, H. Zhou, W. X. Zhou, S. Meng, C. Qi, Z. Liu, T. T. Kong, Adv. Energy Mater. 2021, 11, 2101329.

[41]

Y. Qian, Y. Wu, F. Gu, Z. Zhou, Z. Huang, X. Tang, S. Pan, S. Zhang, S. Chen, Q. Zhang, Y. Chen, S. Wang, Front. Chem. 2022, 10, 874675.

[42]

H. Guo, M. Qiao, J. F. Yan, L. Jiang, J. C. Yu, J. Q. Li, S. F. Deng, L. T. Qu, Adv. Funct. Mater. 2023, 33, 2213514.

[43]

Y. P. Song, N. Li, S. Han, S. D. Zhang, L. Q. Chen, Z. Li, X. L. Yu, C. Liu, M. Xi, G. Wu, W. B. Wang, Z. Y. Wang, Adv. Funct. Mater. 2023, 33, 2305191.

[44]

K. Yang, K. Cho, S. Yang, Y. Park, S. Kim, Nano Energy 2019, 60, 667.

[45]

J. Moon, D. Lu, B. VanSaders, T. K. Kim, S. D. Kong, S. Jin, R. Chen, Z. Liu, Nano Energy 2014, 8, 238.

[46]

S. L. Wu, Y. T. Chen, T. P. Jiao, J. Zhou, J. Y. Cheng, B. Liu, S. R. Yang, K. L. Zhang, W. J. Zhang, Adv. Energy Mater. 2019, 9, 1902915.

[47]

L. Li, Y. Jiang, C. Guo, K. Han, X. Cui, C. He, Y. Chen, Y. Yang, Appl. Surf. Sci. 2024, 653, 159388.

[48]

P. Ma, Q. Geng, X. Gao, S. Yang, G. Liu, Ceramics International 2016, 42, 11966.

[49]

T. Tatarchuk, A. Shyichuk, J. Lamkiewicz, J. Kowalik, Ceramics International 2020, 46, 14674.

[50]

D. Rangappa, T. Naka, A. Kondo, M. Ishii, T. Kobayashi, T. Adschiri, J. Am. Chem. Soc. 2007, 129, 11061.

[51]

J. Lu, K. Minami, S. Takami, T. Adschiri, Chem. Eng. Sci. 2013, 85, 50.

[52]

Q. Wang, Y. Wang, K. Liu, J. Liu, C. Wang, Y. Wang, Q. Chang, Adv. Powder Technol. 2020, 31, 1290.

[53]

B. Orel, H. Spreizer, L. Slemenik Perše, M. Fir, A. Šurca Vuk, D. Merlini, M. Vodlan, M. Köhl, Sol. Energy Mater. Sol. Cells 2007, 91, 93.

[54]

B. Orel, H. Spreizer, A. Šurca Vuk, M. Fir, D. Merlini, M. Vodlan, M. Köhl, Sol. Energy Mater. Sol. Cells 2007, 91, 108.

[55]

Y. Tian, X. Liu, A. Caratenuto, J. Li, S. Zhou, R. Ran, F. Chen, Z. Wang, K. Wan, G. Xiao, Y. Zheng, Nano Energy 2022, 92, 106717.

[56]

L. L. Baranowski, G. J. Snyder, E. S. Toberer, Energy Environ. Sci. 2012, 5, 9055.

[57]

Q. Zhang, S. Xu, Y. Wang, Q. Dou, Y. Sun, X. Yan, Energy Storage Mater. 2023, 55, 205.

[58]

H. Wang, Y. Yuan, F. Xiong, B. Ma, J. Yang, Y. Qing, F. Chu, Y. Wu, Chem. Eng. J. 2023, 476, 146640.

[59]

E. Toberer, Nat. Energy 2016, 1, 16172.

RIGHTS & PERMISSIONS

2024 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (5884KB)

247

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/