Unveiling Na-ion storage mechanism and interface property of layered perovskite Bi2TiO4F2@rGO anode in ether-based electrolyte

Miao Yan , Qi Fang , Rui Ding , Yi Li , Jian Guo , Jinmei Xie , Yuzhen Zhang , Yuming He , Ziyang Yan , Zhiqiang Chen , Xiujuan Sun , Enhui Liu

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (5) : 818 -831.

PDF (8625KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (5) : 818 -831. DOI: 10.1002/cnl2.163
RESEARCH ARTICLE

Unveiling Na-ion storage mechanism and interface property of layered perovskite Bi2TiO4F2@rGO anode in ether-based electrolyte

Author information +
History +
PDF (8625KB)

Abstract

To unveil the charge storage mechanisms and interface properties of electrode materials is very challenging for Na-ion storage. In this work, we report that the novel layered perovskite Bi2TiO4F2@reduced graphene oxides (BTOF@r-GO) serves as a promising anode for Na-ion storage in an ether-based electrolyte, which exhibits much better electrochemical performance than in an ester-based electrolyte. Interestingly, BTOF@rGO possesses a prominent specific capacity of 458.3–102 mAh g–1/0.02–1 Ag–1 and a high initial coulombic efficiency (ICE) of 70.3%. Cross-sectional morphology and depth profile surface chemistry indicate not only a denser reactive interfacial layer but also a superior solid electrolyte interface film containing a higher proportion of inorganic components, which accelerates Na+ migration and is an essential factor for the improvement of ICE and other electrochemical properties. Electrochemical tests and ex situ measurements demonstrate the triple hybridization Na-ion storage mechanism of conversion, alloying, and intercalation for BTOF@rGO in the ether-based electrolyte. Furthermore, the Na-ion batteries assembled with the BTOF@rGO anode and the commercial Na3V2(PO4)2F3@C cathode exhibit remarkable energy densities and power densities. Overall, the work shows deep insights on developing advanced electrode materials for efficient Na-ion storage.

Keywords

anodes / charge storage mechanisms / electrode–electrolyte interfaces / layered perovskites / sodium-ion batteries

Cite this article

Download citation ▾
Miao Yan, Qi Fang, Rui Ding, Yi Li, Jian Guo, Jinmei Xie, Yuzhen Zhang, Yuming He, Ziyang Yan, Zhiqiang Chen, Xiujuan Sun, Enhui Liu. Unveiling Na-ion storage mechanism and interface property of layered perovskite Bi2TiO4F2@rGO anode in ether-based electrolyte. Carbon Neutralization, 2024, 3(5): 818-831 DOI:10.1002/cnl2.163

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Zhang, Y. Yan, X. Wang, Y. Cui, Z. Zhang, S. Wang, Z. Xie, P. Yan, W. Chen, Nat. Commun. 2023, 14, 3701.

[2]

J. M. Ge, C. M. Ma, Y. H. Wan, G. C. Tang, H. L. Dai, S. Sun, W. Chen, Adv. Funct. Mater. 2023, 33, 2305803.

[3]

S. W. Kim, D. H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2012, 2, 710.

[4]

K. W. Nam, S. Kim, E. Yang, Y. Jung, E. Levi, D. Aurbach, J. W. Choi, Chem. Mater. 2015, 27, 3721.

[5]

J. Li, D. Yan, T. Lu, W. Qin, Y. Yao, L. Pan, ACS Appl. Mater. Interfaces 2017, 9, 2309.

[6]

H. Huang, H.-H. Wu, X. Wang, B. Huang, T.-Y. Zhang, Phys. Chem. Chem. Phys. 2018, 20, 20525.

[7]

Y. Li, Y. Lu, C. Zhao, Y.-S. Hu, M.-M. Titirici, H. Li, X. Huang, L. Chen, Energy Storage Mater. 2017, 7, 130.

[8]

R. C. Massé, E. Uchaker, G. Cao, Sci. China Mater. 2015, 58, 715.

[9]

L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao, Z. Guo, Energy Environ. Sci. 2018, 11, 2310.

[10]

H. Yin, W. Shen, H.-Q. Qu, C. Li, M.-Q. Zhu, Nano Energy 2020, 70, 104468.

[11]

Y. Sun, S. H. Guo, H. S. Zhou, Adv. Energy Mater. 2018, 9, 1800212.

[12]

D. Yan, C. Yu, Y. Bai, W. Zhang, T. Chen, B. Hu, Z. Sun, L. Pan, Chem. Commun. 2015, 51, 8261.

[13]

Q. Gan, H. He, Y. Zhu, Z. Wang, N. Qin, S. Gu, Z. Li, W. Luo, Z. Lu, ACS Nano 2019, 13, 9247.

[14]

J.-Y. Hwang, H.-L. Du, B.-N. Yun, M.-G. Jeong, J.-S. Kim, H. Kim, H.-G. Jung, Y.-K. Sun, ACS Energy Lett. 2019, 4, 494.

[15]

D. L. Chao, B. Ouyang, P. Liang, T. T. T. Huong, G. C. Jia, H. Huang, X. H. Xia, R. S. Rawat, H. J. Fan, Adv. Mater. 2018, 30, 1804833.

[16]

C. C. Li, B. Wang, D. Chen, L.-Y. Gan, Y. Feng, Y. Zhang, Y. Yang, H. Geng, X. Rui, Y. Yu, ACS Nano 2019, 14, 531.

[17]

H. Mi, Y. Wang, H. Chen, L. Sun, X. Ren, Y. Li, P. Zhang, Nano Energy 2019, 66, 104136.

[18]

H. Jin, H. Lu, W. Wu, S. Chen, T. Liu, X. Bi, W. Xie, X. Chen, K. Yang, J. Li, A. Liu, Y. Lei, J. Wang, S. Wang, J. Lu, Nano Energy 2020, 70, 104569.

[19]

Y. Y. Wang, Y. X. Wang, W. P. Kang, D. W. Cao, C. X. Li, D. X. Cao, Z. X. Kang, D. F. Sun, R. M. Wang, Y. L. Cao, Adv. Sci. 2018, 6, 1801222.

[20]

Y. H. Ding, Y. Chen, N. Xu, X. T. Lian, L. L. Li, Y. X. Hu, S. J. Peng, Nano-Micro Lett. 2020, 12, 52.

[21]

X. Ou, L. Cao, X. Liang, F. Zheng, H.-S. Zheng, X. Yang, J.-H. Wang, C. Yang, M. Liu, ACS Nano 2019, 13, 3666.

[22]

J. Luo, M. Yang, D. Wang, J. Zhang, K. Song, G. Tang, Z. Xie, X. Guo, Y. Shi, W. Chen, Angew. Chem. Int. Ed. 2023, 62, e202315076.

[23]

M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Adv. Funct. Mater. 2012, 23, 947.

[24]

D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3431.

[25]

J. Zhang, D.-W. Wang, W. Lv, S. Zhang, Q. Liang, D. Zheng, F. Kang, Q.-H. Yang, Energy Environ. Sci. 2017, 10, 370.

[26]

Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Energy Environ. Sci. 2015, 8, 1309.

[27]

A. P. Cohn, K. Share, R. Carter, L. Oakes, C. L. Pint, Nano Lett. 2015, 16, 543.

[28]

D. W. Su, K. Kretschmer, G. X. Wang, Adv. Energy Mater. 2015, 6, 1501785.

[29]

H. Kim, J. Hong, Y. U. Park, J. Kim, I. Hwang, K. Kang, Adv. Energy Mater. 2014, 25, 534.

[30]

J. Zhang, D. W. Wang, W. Lv, L. Qin, S. Z. Niu, S. W. Zhang, T. F. Cao, F. Y. Kang, Q. H. Yang, Adv. Energy Mater. 2018, 8, 1801361.

[31]

C. C. Wang, L. B. Wang, F. J. Li, F. Y. Cheng, J. Chen, Adv. Mater. 2017, 29, 1702212.

[32]

Z. W. Seh, J. Sun, Y. Sun, Y. Cui, ACS Cent. Sci. 2015, 1, 449.

[33]

D. Larcher, J. M. Tarascon, Nat. Chem. 2014, 7, 19.

[34]

M. Á. Muñoz-Márquez, D. Saurel, J. L. Gómez-Cámer, M. Casas-Cabanas, E. Castillo-Martínez, T. Rojo, Adv. Energy Mater. 2017, 7, 1700463.

[35]

J. F. Chen, H. Liu, L. Y. Zhu, Z. P. Fu, Y. L. Lu, J. Alloys Compd. 2021, 873, 159847.

[36]

S. Lei, X. Gao, D. Cheng, L. Fei, W. Lu, J. Zhou, Y. Xiao, B. Cheng, Y. Wang, H. Huang, Eur. J. Inorg. Chem. 2017, 2017, 1892.

[37]

D. Ying, Q. Xu, R. Ding, Y. Huang, T. Yan, Y. Huang, C. Tan, X. Sun, P. Gao, E. Liu, Chem. Eng. J. 2020, 388, 124154.

[38]

D. Ying, R. Ding, Y. Huang, W. Shi, Q. Xu, C. Tan, X. Sun, P. Gao, E. Liu, J. Mater. Chem. A 2019, 7, 18257.

[39]

C. Zhu, S. Guo, Y. Fang, S. Dong, ACS Nano 2010, 4, 2429.

[40]

Y. Si, E. T. Samulski, Nano Lett. 2008, 8, 1679.

[41]

L. W. Su, J. P. Hei, X. B. Wu, L. B. Wang, Z. Zhou, Adv. Funct. Mater. 2017, 27, 1605544.

[42]

V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner, Nat. Nanotechnol. 2008, 4, 25.

[43]

J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, A. Zettl, Nano Lett. 2008, 8, 3582.

[44]

C. H. Lui, L. Liu, K. F. Mak, G. W. Flynn, T. F. Heinz, Nature 2009, 462, 339.

[45]

T. Yan, R. Ding, Y. Huang, D. Ying, C. Tan, Y. Huang, F. Yang, X. Sun, P. Gao, E. Liu, J. Mater. Chem. A 2021, 9, 14276.

[46]

J. Sottmann, M. Herrmann, P. Vajeeston, Y. Hu, A. Ruud, C. Drathen, H. Emerich, H. Fjellvåg, D. S. Wragg, Chem. Mater. 2016, 28, 2750.

[47]

Z. H. Wang, H. Y. Yang, Y. R. Liu, Y. Bai, G. H. Chen, Y. Li, X. R. Wang, H. J. Xu, C. Wu, J. Lu, Small 2020, 16, 2003268.

[48]

S. Choudhury, S. Y. Wei, Y. Ozhabes, D. Gunceler, M. J. Zachman, Z. Y. Tu, J. H. Shin, P. Nath, A. Agrawal, L. F. Kourkoutis, T. A. Arias, L. A. Archer, Nat. Commun. 2017, 8, 95.

[49]

K. M. Song, X. Wang, Z. K. Xie, Z. W. Zhao, Z. Fang, Z. F. Zhang, J. Luo, P. F. Yan, Z. Peng, W. Chen, Angew. Chem. Int. Ed. 2023, 62, e202216450.

[50]

C. Bommier, X. Ji, Small 2018, 14, 1703576.

[51]

J. Manzi, S. Brutti, Electrochim. Acta 2016, 222, 1839.

[52]

S. T. Oyakhire, H. Gong, Y. Cui, Z. Bao, S. F. Bent, ACS Energy Lett. 2022, 7, 2540.

[53]

H. Li, G. Richter, J. Maier, Adv. Mater. 2003, 15, 736.

[54]

L. Su, Y. Zhong, Z. Zhou, J. Mater. Chem. A 2013, 47, 15158.

[55]

M. Bianchini, N. Brisset, F. Fauth, F. Weill, E. Elkaim, E. Suard, C. Masquelier, L. Croguennec, Chem. Mater. 2014, 26, 4238.

[56]

Z.-Y. Gu, J.-Z. Guo, Z.-H. Sun, X.-X. Zhao, W.-H. Li, X. Yang, H.-J. Liang, C.-D. Zhao, X.-L. Wu, Sci. Bullet. 2020, 65, 702.

[57]

K. Y. Zou, W. T. Deng, P. Cai, X. L. Deng, B. W. Wang, C. Liu, J. Y. Li, H. S. Hou, G. Q. Zou, X. B. Ji, Adv. Funct. Mater. 2020, 31, 2005581.

RIGHTS & PERMISSIONS

2024 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (8625KB)

193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/