Integral morphology and structure design of poly (heptazine imide) for efficient utilization of visible light generated charge carriers in proton reduction reactions

Boyin Zhai , Jiarui He , Hongguan Li , Xinglong Li , Suvonkul Nurmanov , Olim Ruzimuradov , Ping Niu , Sangeun Chun , Shulan Wang , Li Li

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (5) : 888 -903.

PDF (3828KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (5) : 888 -903. DOI: 10.1002/cnl2.154
RESEARCH ARTICLE

Integral morphology and structure design of poly (heptazine imide) for efficient utilization of visible light generated charge carriers in proton reduction reactions

Author information +
History +
PDF (3828KB)

Abstract

Sufficient utilization of visible-light generated charge carriers in proton reduction reactions is of great significance for the development of effective solar-fuel technologies. Achieving simultaneous bulk rapid transfer and surface efficient extraction of charge carriers is still very challenging. Herein, it is found for the first time ammonium persulfate (APS) can significantly influence polymerization processes of C3N4 (CN) from melamine to poly (heptazine imide) (PHI) under the simultaneous oxygen doping and etching effect of SO42–. PHI with high crystallinity, porous structure, and in-situ oxygen doping was therefore obtained through one-step APS-assisted salt strategy. Benefiting from sufficient visible-light absorption and upshifted conduction band originating from regulated electronic structure and optimized morphology through APS modification, the as-prepared PHI achieved a H2 evolution activity of 3274.23 µmol h–1 g–1 (λ > 420 nm), which is appropriately 148 and 19 times that of conventional and crystalline CN. This work opens up new opportunities for efficient photocatalysis.

Keywords

ammonium persulfate / crystalline carbon nitride / crystallization / photocatalytic hydrogen production / structural modification

Cite this article

Download citation ▾
Boyin Zhai, Jiarui He, Hongguan Li, Xinglong Li, Suvonkul Nurmanov, Olim Ruzimuradov, Ping Niu, Sangeun Chun, Shulan Wang, Li Li. Integral morphology and structure design of poly (heptazine imide) for efficient utilization of visible light generated charge carriers in proton reduction reactions. Carbon Neutralization, 2024, 3(5): 888-903 DOI:10.1002/cnl2.154

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 2023, 62, e202218688.

[2]

R. Godin, A. Kafizas, J. R. Durrant, Curr Opin Electrochem. 2017, 2, 136.

[3]

Y. Wang, A. Vogel, M. Sachs, R. S. Sprick, L. Wilbraham, S. J. A. Moniz, R. Godin, M. A. Zwijnenburg, J. R. Durrant, A. I. Cooper, J. Tang, Nat. Energy 2019, 4, 746.

[4]

S. Yin, L. Liu, J. Li, H. Wu, Z. Lv, Y. He, J.-Y. Zhang, P. Zhang, Z. Zhao, D. Zhao, K. Lan, J. Am. Chem. Soc. 2023, 146, 1701.

[5]

T. Sun, S. Li, L. Zhang, Y. Xu, Angew. Chem. Int. Ed. 2023, 62, e202301865.

[6]

Y. Liu, Y. Xue, L. Hui, H. Yu, Y. Fang, F. He, Y. Li, Nano Energy 2021, 89, 106333.

[7]

H. Wang, X. K. Gu, X. Zheng, H. Pan, J. Zhu, S. Chen, L. Cao, W. X. Li, J. Lu, Sci. Adv. 2019, 5, eaat6413.

[8]

P. Niu, L. Zhang, G. Liu, H. M. Cheng, Adv. Funct. Mater. 2012, 22, 4763.

[9]

Y. Li, R. Jin, Y. Xing, J. Li, S. Song, X. Liu, M. Li, R. Jin, Adv. Energy Mater. 2016, 6, 1601273.

[10]

F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 2006, 45, 4467.

[11]

G. Zhang, Y. Xu, C. He, P. Zhang, H. Mi, Appl. Catal., B 2021, 283, 119636.

[12]

G. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, B. Fang, Energy Environ. Sci. 2019, 12, 2080.

[13]

C. Merschjann, S. Tschierlei, T. Tyborski, K. Kailasam, S. Orthmann, D. Hollmann, T. Schedel-Niedrig, A. Thomas, S. Lochbrunner, Adv. Mater. 2015, 27, 7993.

[14]

S. Di, H. Li, B. Zhai, X. Zhi, P. Niu, S. Wang, L. Li, Proc. Natl. Acad. Sci. USA. 2023, 120, e2302375120.

[15]

G. Zhang, J. Zhu, Y. Xu, C. Yang, C. He, P. Zhang, Y. Li, X. Ren, H. Mi, ACS Catal. 2022, 12, 4648.

[16]

L. Liu, F. Chen, J. Wu, J. Chen, H. Yu, Proc. Natl. Acad. Sci. USA. 2023, 120, e2215305120.

[17]

M. Zhou, L. Zeng, R. Li, C. Yang, X. Qin, W. Ho, X. Wang, Appl. Catal., B 2022, 317, 121719.

[18]

Y. Li, B. Wang, Q.-J. Xiang, Q. Zhang, G. Chen, Dalton Trans. 2022, 51, 16527.

[19]

M. Liu, C. Wei, H. Zhuzhang, J. Zhou, Z. Pan, W. Lin, Z. Yu, G. Zhang, X. Wang, Angew. Chem. Int. Ed. 2022, 61, e202113389.

[20]

W. Xu, X. An, Q. Zhang, Z. Li, Q. Zhang, Z. Yao, X. Wang, S. Wang, J. Zheng, J. Zhang, W. Wu, M. Wu, ACS Sustain. Chem. Eng. 2019, 7, 12351.

[21]

G. Zhang, L. Lin, G. Li, Y. Zhang, A. Savateev, S. Zafeiratos, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2018, 57, 9372.

[22]

W. Ren, J. Cheng, H. Ou, C. Huang, M. Anpo, X. Wang, J. Catal. 2020, 389, 636.

[23]

G. Zhang, M. Liu, T. Heil, S. Zafeiratos, A. Savateev, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 14950.

[24]

H. Li, B. Cheng, J. Xu, J. Yu, S. Cao, EES Catalysis 2024, 2, 411.

[25]

K. Li, C. Liu, J. Li, G. Wang, K. Wang, Acta Phys. Chim. Sinica 2024, 40, 2403009.

[26]

H. Guo, L. Zhou, K. Huang, Y. Li, W. Hou, H. Liao, C. Lian, S. Yang, D. Wu, Z. Lei, Z. Liu, L. Wang, Adv. Funct. Mater. 2024, 1, 2402650.

[27]

Y. Wang, L. Liu, T. Ma, Y. Zhang, H. Huang, Adv. Funct. Mater. 2021, 31, 2102540.

[28]

C. Zhang, J. Liu, X. Huang, D. Chen, S. Xu, ACS Omega 2019, 4, 17148.

[29]

Y. Jiang, Z. Sun, C. Tang, Y. Zhou, L. Zeng, L. Huang, Appl. Catal., B 2019, 240, 30.

[30]

J. Yan, J. Liu, Y. Sun, D. Ding, C. Wang, L. Sun, X. Li, Inorg. Chem. Front. 2022, 9, 1423.

[31]

H. R. S Abdellatif, G. Zhang, D. Xie, J. Ni, C. Ni, ACS Appl. Nano Mater. 2021, 4, 2828.

[32]

H. Zhao, Q. Jin, M. A. Khan, S. Larter, S. Siahrostami, M. G. Kibria, J. Hu, Chem Catal. 2022, 2, 1720.

[33]

G. Zhang, W. Huang, Y. Xu, Y. Li, C. He, X. Ren, P. Zhang, H. Mi, Adv. Funct. Mater. 2023, 3, 2305935.

[34]

J. Yuan, Y. Tang, X. Yi, C. Liu, C. Li, Y. Zeng, S. Luo, Appl. Catal., B 2019, 251, 206.

[35]

J. Wang, B. Gao, M. Dou, X. Huang, Z. Ma, Environ. Res. 2020, 184, 109339.

[36]

S. Gu, J. Xie, C. M. Li, RSC Adv. 2014, 4, 59436.

[37]

L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, I. Uhlendorf, J. Phys. Chem. B 1997, 101, 10281.

[38]

M. Adachi, J. Jiu, S. Isoda, Y. Mori, F. Uchida, Nanotechnol. Sci. Appl. 2008, 1, 1.

[39]

L. Lin, H. Ou, Y. Zhang, X. Wang, ACS Catal. 2016, 6, 3921.

[40]

M. K. Bhunia, K. Yamauchi, K. Takanabe, Angew. Chem. Int. Ed. 2014, 53, 11001.

[41]

Y. Li, F. Gong, Q. Zhou, X. Feng, J. Fan, Q. Xiang, Appl. Catal., B 2020, 268, 118381.

[42]

Y. Xu, X. He, H. Zhong, D. J. Singh, L. Zhang, R. Wang, Appl. Catal., B 2019, 246, 349.

[43]

Y. Wang, M. Sun, W. Tang, Q. Li, Z. Ren, Y. Liu, Y. Zhang, C. Zeng, Z. Wang, Y. Wu, J. Hao, X. Wu, R. Yang, Mater. Today Phys. 2022, 23, 100634.

[44]

J. Yuan, X. Liu, Y. Tang, Y. Zeng, L. Wang, S. Zhang, T. Cai, Y. Liu, S. Luo, Y. Pei, C. Liu, Appl. Catal., B 2018, 237, 24.

[45]

Y. Zhang, Z. Chen, J. Li, Z. Lu, X. Wang, J. Energy Chem. 2021, 54, 36.

[46]

B. Li, W. Peng, J. Zhang, J. C. Lian, T. Huang, N. Cheng, Z. Luo, W. Q. Huang, W. Hu, A. Pan, L. Jiang, G. F. Huang, Adv. Funct. Mater. 2021, 31, 2100816.

[47]

Z. F. Huang, J. Song, L. Pan, Z. Wang, X. Zhang, J. J. Zou, W. Mi, X. Zhang, L. Wang, Nano Energy 2015, 12, 646.

[48]

Y. Xu, M. Fan, W. Yang, Y. Xiao, L. Zeng, X. Wu, Q. Xu, C. Su, Q. He, Adv. Mater. 2021, 33, e2101455.

[49]

S. Prakasam, S. Monica Murugesan, S. Chinnathambi, Mater. Lett. 2023, 135560.

[50]

L. Lin, W. Ren, C. Wang, A. M. Asiri, J. Zhang, X. Wang, Appl. Catal., B 2018, 231, 234.

[51]

X. Yang, K. Liu, J. Ma, R. Sun, Green Chem. 2022, 24, 5894.

[52]

Y. Liu, Y. Sun, E. Zhao, W. Yang, J. Lin, Q. Zhong, H. Qi, A. Deng, S. Yang, H. Zhang, H. He, S. Liu, Z. Chen, S. Wang, Adv. Funct. Mater. 2023, 33, 2301840.

[53]

W. Zeng, Y. Dong, X. Ye, Z. Zhang, T. Zhang, X. Guan, L. Guo, Chin. Chem. Lett. 2023, 35, 109252.

[54]

P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee, J. Lee, J. W. Han, D.-P. Kim, W. Choi, Nat. Commun. 2019, 10, 940.

[55]

D. Qu, J. Liu, X. Miao, M. Han, H. Zhang, Z. Cui, S. Sun, Z. Kang, H. Fan, Z. Sun, Appl. Catal., B 2018, 227, 418.

[56]

J. Meng, Y. Duan, S. Jing, J. Ma, K. Wang, K. Zhou, C. Ban, Y. Wang, B. Hu, D. Yu, L. Gan, X. Zhou, Nano Energy 2022, 92, 106671.

[57]

Y. Xiao, C. Yao, C. Su, B. Liu, EcoEnergy 2023, 1(1), 60.

[58]

K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Sci. China Mater. 2024, 67, 484.

[59]

G. Zhang, G. Li, T. Heil, S. Zafeiratos, F. Lai, A. Savateev, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 3433.

[60]

X. Long, C. Feng, S. Yang, D. Ding, J. Feng, M. Liu, Y. Chen, J. Tan, X. Peng, J. Shi, R. Chen, Chem. Eng. J. 2022, 435, 134835.

[61]

S. Lin, B. Wu, Q. Li, X. Xiao, M. Zheng, J. Liu, Y. Xie, B. Jiang, Sci. China Mater. 2023, 66, 4669.

[62]

G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu, H.-M. Cheng, J. Am. Chem. Soc. 2010, 132, 11642.

[63]

L. Jian, Y. Dong, H. Zhao, C. Pan, G. Wang, Y. Zhu, Appl. Catal., B 2024, 342, 123340.

[64]

Z. Sun, H. Dong, Q. Yuan, Y. Tan, W. Wang, Y. Jiang, J. Wan, J. Wen, J. Yang, J. He, T. Cheng, L. Huang, Chem. Eng. J. 2022, 435, 134865.

[65]

C. Wang, Y. Tang, Z. Geng, Y. Guo, X. Tan, Z. Hu, T. Yu, ACS Catal. 2023, 13, 11687.

[66]

W. Xing, F. Ma, Z. Li, A. Wang, M. Liu, J. Han, G. Wu, W. Tu, J. Mater. Chem. A 2022, 10, 18333.

RIGHTS & PERMISSIONS

2024 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (3828KB)

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/