PDF
(4687KB)
Abstract
The addition of two-dimensional MXene materials gives microsupercapacitors (MSCs) the advantages of higher power density, faster charging and discharging speeds, and longer lifetimes. To date, various fabrication methods and strategies have been used to finely synthesize MXene electrodes. However, different technologies not only affect the electrode structure of MXene but also directly affect the performance of MSCs. Here, we provide a comprehensive and critical review of the design and microfabrication strategies for MXene’s fork-finger microelectrodes. First, we provide a systematic overview of micromachining techniques applied to MXene, including graphic cutting, screen-printing, 3D printing, inkjet, and stamp methods. In addition, we discuss in detail the advantages and disadvantages of these machining techniques, summarizing the environment in which the technique is used and the results expected to be achieved. Finally, the challenges as well as the outlook for future applications are summarized to promote the further development of MXene materials in the field of MSCs.
Keywords
interdigited
/
micro-supercapacitors
/
MXene
/
printing method
/
tangent method
Cite this article
Download citation ▾
Yitong Wang, Yuhua Wang.
MXene ink printing of high-performance micro-supercapacitors.
Carbon Neutralization, 2024, 3(5): 798-817 DOI:10.1002/cnl2.165
| [1] |
N. A. Kyeremateng, T. Brousse, D. Pech, Nat. Nanotechnol. 2017, 12, 7.
|
| [2] |
R. Guo, J. Chen, B. Yang, L. Liu, L. Su, B. Shen, X. Yan, Adv. Funct. Mater. 2017, 27, 1702394.
|
| [3] |
H. Xiao, Z.-S. Wu, L. Chen, F. Zhou, S. Zheng, W. Ren, H.-M. Cheng, X. Bao, ACS Nano 2017, 11, 7284.
|
| [4] |
H. Xiao, Z.-S. Wu, F. Zhou, S. Zheng, D. Sui, Y. Chen, X. Bao, Energy Storage Mater. 2018, 13, 233.
|
| [5] |
Y. Lin, Y. Gao, Z. Fan, Adv. Mater. 2017, 29, 1701736.
|
| [6] |
Z. Liu, Z.-S. Wu, S. Yang, R. Dong, X. Feng, K. Müllen, Adv. Mater. 2016, 28, 2217.
|
| [7] |
J. Qiu, H. Zhao, Y. Lei, SmartMat 2022, 3, 447.
|
| [8] |
Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, R. B. Kaner, Mater. Horiz. 2017, 4, 1145.
|
| [9] |
N. Kurra, M. K. Hota, H. N. Alshareef, Nano Energy 2015, 13, 500.
|
| [10] |
S.-W. Kim, K.-N. Kang, J.-W. Min, J.-H. Jang, Nano Energy 2018, 50, 410.
|
| [11] |
W. Song, J. Zhu, B. Gan, S. Zhao, H. Wang, C. Li, J. Wang, Small 2018, 14, 1702249.
|
| [12] |
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Nat. Nanotechnol. 2010, 5, 651.
|
| [13] |
P. Chang, H. Mei, S. Zhou, K. G. Dassios, L. Cheng, J. Mater. Chem. A 2019, 7, 4230.
|
| [14] |
C. Zhou, X. Zhao, Y. Xiong, Y. Tang, X. Ma, Q. Tao, C. Sun, W. Xu, Eur. Polym. J. 2022, 167, 111063.
|
| [15] |
M. Dadashi Firouzjaei, M. Karimiziarani, H. Moradkhani, M. Elliott, B. Anasori, Mater. Today Adv. 2022, 13, 100202.
|
| [16] |
H. Xu, D. Zheng, F. Liu, W. Li, J. Lin, J. Mater. Chem. A 2020, 8, 5853.
|
| [17] |
Y. Gogotsi, Chem. Mater. 2023, 35, 8767.
|
| [18] |
A. VahidMohammadi, J. Moncada, H. Chen, E. Kayali, J. Orangi, C. A. Carrero, M. Beidaghi, J. Mater. Chem. A 2018, 6, 22123.
|
| [19] |
S. Ren, J.-L. Xu, L. Cheng, X. Gao, S.-D. Wang, ACS Appl. Mater. Interfaces 2021, 13, 35878.
|
| [20] |
I. Cho, A. R. Selvaraj, J. Bak, H. Kim, K. Prabakar, J. Energy Storage 2022, 53, 105207.
|
| [21] |
Z. Zheng, W. Wu, T. Yang, E. Wang, Z. Du, X. Hou, T. Liang, H. Wang, J. Adv. Ceram. 2021, 10, 1061.
|
| [22] |
Q. Wu, Y. Wang, P. Li, S. Chen, F. Wu, Dalton Trans. 2022, 51, 3263.
|
| [23] |
K. A. S Usman, C. J. O. Bacal, J. Zhang, S. Qin, P. A. Lynch, P. Mota-Santiago, M. Naebe, L. C. Henderson, D. Y. Hegh, J. M. Razal, Macromol. Rapid Commun. 2022, 43, 2200114.
|
| [24] |
S. Yadav, N. Kurra, Energy Storage Mater. 2024, 65, 103094.
|
| [25] |
J. Bae, M. S. Kim, T. Oh, B. L. Suh, T. G. Yun, S. Lee, K. Hur, Y. Gogotsi, C. M. Koo, I.-D. Kim, Energy Environ. Sci. 2022, 15, 123.
|
| [26] |
Y. Tan, L. Yang, D. Zhai, L. Sun, S. Zhai, W. Zhou, X. Wang, W.-Q. Deng, H. Wu, Small 2022, 18, 2204942.
|
| [27] |
T. H. Park, S. Yu, M. Koo, H. Kim, E. H. Kim, J.-E. Park, B. Ok, B. Kim, S. H. Noh, C. Park, E. Kim, C. M. Koo, C. Park, ACS Nano 2019, 13, 6835.
|
| [28] |
C. Qiao, H. Wu, X. Xu, Z. Guan, W. Ou-Yang, Adv. Mater. Interfaces 2021, 8, 2100903.
|
| [29] |
R. Lotfi, M. Naguib, D. E. Yilmaz, J. Nanda, A. C. T. van Duin, J. Mater. Chem. A 2018, 6, 12733.
|
| [30] |
M. Pogorielov, K. Smyrnova, S. Kyrylenko, O. Gogotsi, V. Zahorodna, A. Pogrebnjak, Nanomaterials 2021, 11, 3412.
|
| [31] |
B. Akgenc, E. Vatansever, F. Ersan, Phys. Rev. Mater. 2021, 5, 083403.
|
| [32] |
D. Magne, V. Mauchamp, S. Célérier, P. Chartier, T. Cabioc’h, Phys. Chem. Chem. Phys. 2016, 18, 30946.
|
| [33] |
Y. Huang, Q. Lu, D. Wu, Y. Jiang, Z. Liu, B. Chen, M. Zhu, O. G. Schmidt, Carbon Energy 2022, 4, 598.
|
| [34] |
N. Kurra, B. Ahmed, Y. Gogotsi, H. N. Alshareef, Adv. Energy Mater. 2016, 6, 1601372.
|
| [35] |
P. Salles, E. Quain, N. Kurra, A. Sarycheva, Y. Gogotsi, Small 2018, 14, 1802864.
|
| [36] |
H. Hu, Z. Bai, B. Niu, M. Wu, T. Hua, J. Mater. Chem. A 2018, 6, 14876.
|
| [37] |
S. Jiao, A. Zhou, M. Wu, H. Hu, Adv. Sci. 2019, 6, 1900529.
|
| [38] |
H. Li, X. Li, J. Liang, Y. Chen, Adv. Energy Mater. 2019, 9, 1803987.
|
| [39] |
H. Huang, X. Chu, H. Su, H. Zhang, Y. Xie, W. Deng, N. Chen, F. Liu, H. Zhang, B. Gu, W. Deng, W. Yang, J. Power Sources 2019, 415, 1.
|
| [40] |
J. Orangi, F. Hamade, V. A. Davis, M. Beidaghi, ACS Nano 2020, 14, 640.
|
| [41] |
Y. Xie, H. Zhang, H. Huang, Z. Wang, Z. Xu, H. Zhao, Y. Wang, N. Chen, W. Yang, Nano Energy 2020, 74, 104928.
|
| [42] |
D. Tu, W. Yang, Y. Li, Y. Zhou, L. Shi, J. Xu, Y. Yang, J. Mater. Chem. C 2021, 9, 11104.
|
| [43] |
P. Sun, J. Liu, Q. Liu, J. Yu, R. Chen, J. Zhu, G. Sun, Y. Li, P. Liu, J. Wang, Chem. Eng. J. 2022, 450, 138372.
|
| [44] |
L. Ma, D. Luo, Y. Li, X. Chen, K. Wu, J. Xu, Y. Cao, M. Luo, I. Manke, F. Lai, C. Yang, Z. Chen, Nano Energy 2022, 101, 107590.
|
| [45] |
J. Wang, F. Li, F. Zhu, O. G. Schmidt, Small Methods 2019, 3, 1800367.
|
| [46] |
Y. Zhu, S. Wang, J. Ma, P. Das, S. Zheng, Z.-S. Wu, Energy Storage Mater. 2022, 51, 500.
|
| [47] |
Y. Lu, Y. Zheng, H. Zhang, X. He, Q. Yang, J. Wu, J. Electroanal. Chem. 2020, 866, 114169.
|
| [48] |
H. Huang, H. Su, H. Zhang, L. Xu, X. Chu, C. Hu, H. Liu, N. Chen, F. Liu, W. Deng, B. Gu, H. Zhang, W. Yang, Adv. Electron. Mater. 2018, 4, 1800179.
|
| [49] |
Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb, B. Anasori, E. C. Kumbur, H. N. Alshareef, M.-D. Ger, Y. Gogotsi, Energy Environ. Sci. 2016, 9, 2847.
|
| [50] |
P. Li, W. Shi, W. Liu, Y. Chen, X. Xu, S. Ye, R. Yin, L. Zhang, L. Xu, X. Cao, Nanotechnology 2018, 29, 445401.
|
| [51] |
Q. Xu, L. Jiang, C. Ma, Q. Niu, X. Wang, Front. Earth Sci. 2021, 9, 763202.
|
| [52] |
A. A. Alshamrani, R. Raju, A. Ellakwa, BioMed Res. Int. 2022, 2022, e8353137.
|
| [53] |
B. S. Shim, J.-U. Hou, Sensors 2023, 23, 8250.
|
| [54] |
Z. Zhang, P. Li, F. Chu, G. Shen, J. Orof. Orthop./Fortschritte der Kieferorthopädie 2019, 80, 194.
|
| [55] |
A. Z. Farkas, S.-V. Galatanu, R. Nagib, Polymers 2023, 15, 1113.
|
| [56] |
L.-Y. Zhou, J. Fu, Y. He, Adv. Funct. Mater. 2020, 30, 2000187.
|
| [57] |
J. Žarko, G. Vladić, M. Pál, S. Dedijer, J. Graphic Eng. Design 2017, 8, 19.
|
| [58] |
Y. Cho, Y. Jeong, Y. Kim, S. Kwon, S.-H. Lee, K. Kim, D. Kang, T.-M. Lee, Appl. Sci. 2017, 7, 1302.
|
| [59] |
K. Fukuda, T. Someya, Adv. Mater. 2017, 29, 25.
|
| [60] |
K.-S. Kwon, M. K. Rahman, T. H. Phung, S. D. Hoath, S. Jeong, J. S. Kim, Flex. Print. Electron. 2020, 5, 043003.
|
| [61] |
J.-H. Ahn, H.-J. Hong, C.-Y. Lee, Materials 2021, 14, 5623.
|
| [62] |
L. Qin, Q. Tao, X. Liu, M. Fahlman, J. Halim, P. O. Å. Persson, J. Rosen, F. Zhang, Nano Energy 2019, 60, 734.
|
| [63] |
H. Li, Y. Hou, F. Wang, M. R. Lohe, X. Zhuang, L. Niu, X. Feng, Adv. Energy Mater. 2017, 7, 1601847.
|
| [64] |
H. Huang, J. He, Z. Wang, H. Zhang, L. Jin, N. Chen, Y. Xie, X. Chu, B. Gu, W. Deng, W. Yang, Nano Energy 2020, 69, 104431.
|
| [65] |
S. Zheng, C. Zhang, F. Zhou, Y. Dong, X. Shi, V. Nicolosi, Z.-S. Wu, X. Bao, J. Mater. Chem. A 2019, 7, 9478.
|
| [66] |
S. Xu, Y. Dall’Agnese, G. Wei, C. Zhang, Y. Gogotsi, W. Han, Nano Energy 2018, 50, 479.
|
| [67] |
C. Couly, M. Alhabeb, K. L. Van Aken, N. Kurra, L. Gomes, A. M. Navarro-Suárez, B. Anasori, H. N. Alshareef, Y. Gogotsi, Adv. Electron. Mater. 2018, 4, 1700339.
|
| [68] |
C. Zhang, L. McKeon, M. P. Kremer, S.-H. Park, O. Ronan, A. Seral-Ascaso, S. Barwich, C. Ó. Coileáin, N. McEvoy, H. C. Nerl, B. Anasori, J. N. Coleman, Y. Gogotsi, V. Nicolosi, Nat. Commun. 2019, 10, 1795.
|
| [69] |
L. Yu, Z. Fan, Y. Shao, Z. Tian, J. Sun, Z. Liu, Adv. Energy Mater. 2019, 9, 1901839.
|
| [70] |
C. (John) Zhang, M. P. Kremer, A. Seral-Ascaso, S.-H. Park, N. McEvoy, B. Anasori, Y. Gogotsi, V. Nicolosi, Adv. Funct. Mater. 2018, 28, 1705506.
|
| [71] |
B.-S. Shen, H. Wang, L.-J. Wu, R.-S. Guo, Q. Huang, X.-B. Yan, Chin. Chem. Lett. 2016, 27, 1586.
|
| [72] |
H. Hu, T. Hua, J. Mater. Chem. A 2017, 5, 19639.
|
| [73] |
E. Quain, T. S. Mathis, N. Kurra, K. Maleski, K. L. Van Aken, M. Alhabeb, H. N. Alshareef, Y. Gogotsi, Adv. Mater. Technol. 2019, 4, 1800256.
|
| [74] |
J. Zhou, J. Yu, L. Shi, Z. Wang, H. Liu, B. Yang, C. Li, C. Zhu, J. Xu, Small 2018, 14, 1803786.
|
| [75] |
L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, ACS Energy Lett. 2018, 3, 1597.
|
| [76] |
J. Miao, M. Tian, L. Qu, X. Zhang, Carbon 2024, 222, 118950.
|
| [77] |
C. (John) Zhang, B. Anasori, A. Seral-Ascaso, S.-H. Park, N. McEvoy, A. Shmeliov, G. S. Duesberg, J. N. Coleman, Y. Gogotsi, V. Nicolosi, Adv. Mater. 2017, 29, 1702678.
|
| [78] |
Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang, A. Levitt, N. Li, C. Haines, R. Ovalle-Robles, W. Lei, Y. Gogotsi, R. H. Baughman, J. M. Razal, Small 2018, 14, 1802225.
|
| [79] |
X. Du, J. Lu, Y. Liang, Y. Zhang, J. Gao, X. Zhu, ACS Appl. Mater. Interfaces 2023, 15, 21134.
|
| [80] |
M. Tahir, L. He, W. A. Haider, W. Yang, X. Hong, Y. Guo, X. Pan, H. Tang, Y. Li, L. Mai, Nanoscale 2019, 11, 7761.
|
| [81] |
K.-H. Lee, S.-W. Kim, M. Kim, D. B. Ahn, Y.-K. Hong, S.-H. Kim, J. S. Lee, S.-Y. Lee, Adv. Energy Mater. 2023, 13, 2204327.
|
| [82] |
C. Kim, J. H. Moon, ACS Appl. Mater. Interfaces 2018, 10, 19682.
|
| [83] |
J.-K. Chih, A. Jamaluddin, F. Chen, J.-K. Chang, C.-Y. Su, J. Mater. Chem. A 2019, 7, 12779.
|
| [84] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.
|
| [85] |
M. Downes, C. E. Shuck, R. W. Lord, M. Anayee, M. Shekhirev, R. J. Wang, T. Hryhorchuk, M. Dahlqvist, J. Rosen, Y. Gogotsi, ACS Nano 2023, 17, 17158.
|
| [86] |
R. Ponce-Pérez, S. J Gutierrez-Ojeda, J. Guerrero-Sánchez, M. G Moreno-Armenta, Sci. Rep. 2021, 11, 12393.
|
| [87] |
T. Zhang, C. E. Shuck, K. Shevchuk, M. Anayee, Y. Gogotsi, J. Am. Chem. Soc. 2023, 145, 22374.
|
| [88] |
Q. Hu, D. Sun, Q. Wu, H. Wang, L. Wang, B. Liu, A. Zhou, J. He, J. Phys. Chem. A 2013, 117, 14253.
|
| [89] |
V. Kamysbayev, A. S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R. F. Klie, D. V. Talapin, Science 2020, 369, 979.
|
| [90] |
J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, Y. Li, Y. Gogotsi, G. Wang, Nat. Catal. 2018, 1, 985.
|
| [91] |
D. A. Kuznetsov, Z. Chen, P. V. Kumar, A. Tsoukalou, A. Kierzkowska, P. M. Abdala, O. V. Safonova, A. Fedorov, C. R. Müller, J. Am. Chem. Soc. 2019, 141, 17809.
|
| [92] |
C.-F. Du, X. Sun, H. Yu, Q. Liang, K. N. Dinh, Y. Zheng, Y. Luo, Z. Wang, Q. Yan, Adv. Sci. 2019, 6, 1900116.
|
| [93] |
T. Zhang, K. Matthews, A. VahidMohammadi, M. Han, Y. Gogotsi, ACS Energy Lett. 2022, 7, 3864.
|
| [94] |
X. Zhao, C. Dall’Agnese, X.-F. Chu, S. Zhao, G. Chen, Y. Gogotsi, Y. Gao, Y. Dall’Agnese, ChemSusChem 2019, 12, 4480.
|
| [95] |
J. Wu, Q. Li, C. E. Shuck, K. Maleski, H. N. Alshareef, J. Zhou, Y. Gogotsi, L. Huang, Nano Res. 2022, 15, 535.
|
| [96] |
M. Lu, W. Han, H. Li, H. Li, B. Zhang, W. Zhang, W. Zheng, Adv. Mater. Interfaces 2019, 6, 1900160.
|
| [97] |
M. Boota, Y. Gogotsi, Adv. Energy Mater. 2019, 9, 1802917.
|
| [98] |
J. Xu, X. Hu, X. Wang, X. Wang, Y. Ju, S. Ge, X. Lu, J. Ding, N. Yuan, Y. Gogotsi, Energy Storage Mater. 2020, 33, 382.
|
| [99] |
L. Liu, H. Zschiesche, M. Antonietti, M. Gibilaro, P. Chamelot, L. Massot, P. Rozier, P.-L. Taberna, P. Simon, Adv. Energy Mater. 2023, 13, 2203805.
|
| [100] |
X. Chen, S. Wang, J. Shi, X. Du, Q. Cheng, R. Xue, Q. Wang, M. Wang, L. Ruan, W. Zeng, Adv. Mater. Interfaces 2019, 6, 1901160.
|
| [101] |
Y. Zhu, Z. Ni, J. Gao, D. Zhang, S. Wang, J. Zhao, J. Phys. Chem. Solids 2023, 183, 111619.
|
| [102] |
N. Wang, J. Liu, Y. Zhao, M. Hu, R. Qin, G. Shan, ChemNanoMat 2019, 5, 658.
|
| [103] |
H. Wang, Y. Xue, X. Song, S. Lei, H. Yu, C.-F. Du, Z. Ren, R. Guo, F. Zhou, J. Mater. Chem. A 2022, 10, 20953.
|
| [104] |
S. Xu, H. Yang, Y. Li, H. Huang, X. Liang, Y. Wang, Q. Hu, G. Wei, Y. Yang, Chem. Eng. J. 2023, 464, 142645.
|
RIGHTS & PERMISSIONS
2024 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.