A systematic study of switching, optoelectronics, and gassensitive properties of PCF-graphene-based nanodevices: Insights from DFT study

Wenhao Yang , Tong Chen , Luzhen Xie , Yang Yu , Mengqiu Long , Liang Xu

Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (5) : 904 -917.

PDF (3040KB)
Carbon Neutralization ›› 2024, Vol. 3 ›› Issue (5) : 904 -917. DOI: 10.1002/cnl2.156
RESEARCH ARTICLE

A systematic study of switching, optoelectronics, and gassensitive properties of PCF-graphene-based nanodevices: Insights from DFT study

Author information +
History +
PDF (3040KB)

Abstract

Two-dimensional materials exhibit significant potential and wide-ranging application prospects owing to their remarkable tunability, pronounced quantum confinement effects, and notable surface sensitivity. The switching, optoelectronics, and gas-sensitive properties of the new carbon material poly-cyclooctatetraene framework (PCF)-graphene were systematically studied using density functional theory combined with the nonequilibrium Green’s function method. First, the diode device based on PCF-graphene monolayer exhibited an impressive switching ratio of 106, demonstrating excellent diode characteristics. Moreover, in the investigation of the pin junction utilizing monolayer PCF-graphene, it is noteworthy that significant photocurrent responses were observed in both the zigzag and armchair directions, specifically within the visible and ultraviolet regions. Finally, gas sensors employing monolayer and bilayer PCF-graphene demonstrate significant chemical adsorption capabilities for NO and NO2. Notably, the maximum gas sensitivity for NO is achieved in monolayer PCF-graphene, reaching 322% at a bias voltage of 1.0 V. Meanwhile, for bilayer PCF-graphene-based gas sensor, the maximum gas sensitivity reaches 52% at a bias voltage of 0.4 V. In addition, the study also examined the influence of various environmental conditions, specifically H2O, O, and OH, on the system under investigation. The obtained results emphasize the multifunctional properties of PCF-graphene, exhibiting significant potential for various applications, including switching devices, optoelectronic devices, and gas sensors.

Keywords

electronic transport / gas sensitivity / PCF-graphene / photodiode / switching

Cite this article

Download citation ▾
Wenhao Yang, Tong Chen, Luzhen Xie, Yang Yu, Mengqiu Long, Liang Xu. A systematic study of switching, optoelectronics, and gassensitive properties of PCF-graphene-based nanodevices: Insights from DFT study. Carbon Neutralization, 2024, 3(5): 904-917 DOI:10.1002/cnl2.156

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.

[2]

T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220.

[3]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.

[4]

A. Hirsch, Nat. Mater. 2010, 9, 868.

[5]

Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen, S. Zhang, Nano Lett. 2015, 15, 6974.

[6]

Y. Liu, G. Wang, Q. Huang, L. Guo, X. Chen, Phys. Rev. Lett. 2012, 108, 225505.

[7]

Y. X. Cai, Y. Q. Guo, B. Jiang, Y. Lv, Sci. Rep-Uk 2017, 7, 14948.

[8]

H. Yin, X. Shi, C. He, M. Martinez-Canales, J. Li, C. J. Pickard, C. Tang, T. Ouyang, C. Zhang, J. Zhong, Phys. Rev. B: Condens. Matter Mater. Phys. 2019, 99, 041405.

[9]

S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, Proc. Natl. Acad. Sci. USA 2015, 112, 2372.

[10]

X. Wang, J. Rong, Y. Song, X. Yu, Z. Zhan, J. Deng, Phys. Lett. A 2017, 381, 2845.

[11]

X. Li, Q. Wang, P. Jena, J. Phys. Chem. Lett. 2017, 8, 3234.

[12]

W. J. Yin, Y. E. Xie, L. M. Liu, R. Z. Wang, X. L. Wei, L. Lau, J. X. Zhong, Y. P. Chen, J. Mater. Chem. A 2013, 1, 5341.

[13]

S. Wang, B. Yang, H. Chen, E. Ruckenstein, J. Mater. Chem. A 2018, 6, 6815.

[14]

Z. Wang, X. F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, A. R. Oganov, Nano Lett. 2015, 15, 6182.

[15]

C. Luo, T. Chen, X. Dong, L. Xie, D. Qin, L. Huang, H. Li, X. Xiao, J. Mater. Chem. C 2023, 11, 9114.

[16]

L. Xie, T. Chen, X. Dong, G. Liu, H. Li, N. Yang, D. Liu, X. Xiao, ACS Sens. 2023, 8, 3510.

[17]

Y. Shen, J. Yu, J. Liu, Y. Guo, Y. Qie, Q. Wang, J. Phys. Chem. Lett. 2019, 123, 4567.

[18]

Y. Li, X. Shang, Y. H. Zhou, X. Zheng, Phys. Chem. Chem. Phys. 2023, 25, 2890.

[19]

L. Song, Y. Zhang, R. Ye, L. Liu, C. Wei, H. Zhao, X. Zheng, 2D Mater. 2022, 10, 015017.

[20]

D. Qin, T. Chen, L. Xie, N. Yang, C. Luo, G. Zhou, Phys. Chem. Chem. Phys. 2023, 25, 29315.

[21]

X. K. Chen, Z. X. Xie, Y. Zhang, Y. X. Deng, T. H. Zou, J. Liu, K. Q. Chen, Carbon 2019, 148, 532.

[22]

X. K. Chen, M. Pang, T. Chen, D. Du, K. Q. Chen, ACS Appl. Mater. Interfaces 2020, 12, 15517.

[23]

Z. Han, H. Hao, X. Zheng, Z. Zeng, Phys. Chem. Chem. Phys. 2023, 25, 6461.

[24]

X. W. Lv, X. J. Ye, X. H. Zheng, R. Jia, C. S. Liu, Appl. Phys. Lett. 2023, 122, 173103.

[25]

X. K. Chen, X. Y. Hu, P. Z. Jia, G. F. Xie, Appl. Phys. Lett. 2022, 121, 182205.

[26]

Z. Dai, L. Liu, Z. Zhang, Adv. Mater. 2019, 31, 1805417.

[27]

Naumis G. G., S. Barraza-Lopez, M. Oliva-Leyva, H. Terrones, Rep. Prog. Phys. 2017, 80, 096501.

[28]

S. X. Qiao, C. H. Sui, L. Yang, Y. P. Li, Y. X. Sun, N. X. Zhang, J. Q. Bai, N. Jiao, H. Y. Lu, Phys. Chem. Chem. Phys. 2022, 24, 25767.

[29]

M. Wang, W. Zhai, S. Zhou, X. Lu, C. M. L. Wu, Appl. Surf. Sci. 2021, 553, 149575.

[30]

T. Jiang, R. Xiong, T. Huang, M. Li, Y. Zhang, H. Zhou, Diamond Relat. Mater. 2022, 130, 109409.

[31]

M. Zhu, X. Du, S. Liu, J. Li, Z. Wang, T. Ono, J. Mater. Chem. C 2021, 9, 9083.

[32]

X. Dong, T. Chen, G. Zhou, J. Alloys Compd. 2024, 977, 173417.

[33]

O. Leenaerts, B. Partoens, F. M. Peeters, Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 77, 125416.

[34]

G. Kresse, J. Furthmüller, J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 13181.

[35]

G. Kresse, J. Furthmüller, Mater, Sci 1996, 6, 15.

[36]

P. E. Blöchl, Phys. Rev. B. Condens. Matter 1994, 50, 17953.

[37]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[38]

J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.

[39]

D. J. Chadi, Phys. Rev. B: Condens. Matter Mater. Phys. 1977, 16, 1746.

[40]

S. Grimme, J. Comput. Chem. 2006, 27, 1787.

[41]

D. Alfè, Comput. Phys. Commun. 2009, 180, 2622.

[42]

J. Taylor, H. Guo, J. Wang, Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 63, 245407.

[43]

M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 65, 165401.

[44]

M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B: Condens. Matter Mater. Phys. 1985, 31, 6207.

[45]

H. He, Z. W. Hao, X. Q. Lu, M. M. Dong, Z. L. Li, C. K. Wang, X. X. Fu, Appl. Surf. Sci. 2024, 651, 159194.

[46]

J. Paier, M. Marsman, K. Hummer, G. Kresse, I. Gerber, J. Ángyán, J. Chem. Phys. 2006, 124, 154709.

RIGHTS & PERMISSIONS

2024 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (3040KB)

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/