Nociceptive-selective analgesia is often preferred over traditional methods, providing effective pain relief with minimum systemic side effects.The quaternary lidocaine derivative QX-314, is a promising local anesthetic for achieving selective analgesia. However, due to its inability to penetrate the cell membrane, its efficacy is limited to intracellular administration. In this study, we aimed to develop an injectable electrospun fiber-hydrogel composite comprising QX-314-loaded poly(ε-caprolactone) electrospun fiber and capsaicin (Cap)-loaded F127 hydrogel (Fiber-QX314/Gel-Cap composite) for long-term and nociceptive-selective analgesia. The sequential and sustained release mechanism of Cap and QX-314 helped remarkably extend the sensory blockade duration up to 44.0 h, and prevent motor blockade. Specifically, our findings indicated that QX-314 can traverse the cell membrane through the transient receptor potential vanilloid 1 channel activated by Cap, thus targeting the intracellular Na+ channel receptor to achieve selective analgesia. Moreover, the composite effectively alleviated incision pain by suppressing c-Fos expression in the dorsal root ganglion and reducing the activation of glial cells in the dorsal horn of the spinal cord. Consequently, the Fiber-QX314/Gel-Cap composite, designed for exceptional biosafety and sustained selective analgesia, holds great promise as a non-opioid analgesic.
Injectable composite comprising QX-314-loaded electrospun fiber and capsaicin-loaded thermosensitive hydrogel sequentially releasing drugs for prolonged and nociceptive-selective local analgesia.
[graphic not available: see fulltext]
Air pollutants, which are composed of diverse components such as particulate matter (PM), volatile organic compounds (VOCs), nitrogen oxides (NOx), sulfur dioxide (SO2), and pathogenic microorganisms, have adverse effects on both the ecosystem and human health. While existing air purification technologies can effectively eliminate these pollutants through multiple processes targeting specific components, they often entail high energy consumption, maintenance costs, and complexity. Recent developments in air purification technology based on multifunctional nanofibrous membranes present a promising single-step solution for the effective removal of diverse air pollutants. Through synergistic integration with functional materials, other functional materials, such as those with catalytic, adsorption, and antimicrobial properties, can be incorporated into nanofibrous membranes. In this review, the design concepts and fabrication strategies of multifunctional nanofibrous membranes to facilitate the integrated removal of multiple air pollutants are explored. Additionally, nanofibrous membrane preparation methods, PM removal mechanisms, and performance metrics are introduced. Next, methods for removing various air pollutants are outlined, and different air purification materials are reviewed. Finally, the design approaches and the state-of-the-art of multifunctional nanofibrous membranes for integrated air purification are highlighted.
It is a worldwide challenge to achieve an efficient cleaning of heavy oil at ambient temperature. Conventional cleanup methods for high-viscosity oil spills exhibit low absorption efficiency and have severe practical operating limits. Herein, inspired by the passive transport process in the Salvinia cucullata, a solar-heated and joule-heated textile-based absorber using the scalable electrostatic flocking technique. Benefiting from the efficient photothermal and electrothermal conversion effects, the textile-based absorber, with oleophilic and aligned channels, facilitates thermal conduction and hence enhances heavy oil absorption. The absorber is highly efficient for organic solvents (chloroform and dichloromethane) and low-viscosity oils (silicone oil, gasoline, and diesel oil). The surface temperature of the textile absorber rises rapidly to 92 °C (114 °C) in 120 s (240 s) under one sun irradiation (or 5 V voltage), resulting in a sharp drop in the viscosity of the heavy oil and then achieving an ultrahigh absorption rate (2647 kg h−1 m−2) and fast equilibrium time (25 s). Rapid absorption rate significantly reduces spill cleanup time and spill spreading area, hence alleviating the environmental harm caused by oil spills as much as possible. The proposed solar-heated and joule-heated textile-based absorbers with aligned channels show great potential for efficient heavy oil absorption.
Textiles, ranging from individual fibers to assembled yarns and fabrics, have long served diverse functions in apparel and across several industrial sectors. In pursuit of enhanced functionalities, the textile community is constantly exploring possible advancements as presented by emerging materials, which leads to frequent convergence of the textile community with the materials–science community in an interdisciplinary manner. Over the past two decades, the advent of two-dimensional (2D) materials, which are characterized by quantum confinement on the thickness direction and their resulting spectacular physical and chemical properties, has provided substantial opportunities to enhance technical performances of various textile products. Demonstrated applications span across diverse domains, including electronics, biomedicine, aerospace, environment, and energy. This review comprehensively surveys the recent developments on this topic, starting with various categories of 2D materials and their pertinent properties relevant to textile integration. Later, the discussion extends to a group of materials–integration techniques for textiles, while more focus is put on the fiber-spinning and surface-deposition protocols. Subsequently we delve into a variety of emerging applications as reported in literature, and in the end, we conclude with an assessment of technological constraints and the associated commercial prospects of these 2D-material/textile systems.
The high impedance caused by the lack of interfacial hydrogel in dry electrodes seriously affects the quality of acquired electrophysiological signals. Although there are existing strategies to reduce impedance with micro–nanostructures, achieving stretchable and breathable electrodes while ensuring low impedance is extremely challenging. Herein, we successfully prepared a dry textile electrode (nanomesh film (NF)-ZnO–polypyrrole (PPy)) with low impedance, high stretchability, and breathability. Wrinkle-nanorod coupled microstructures are constructed to increase the effective surface area and roughness of NF-ZnO–PPy electrode, achieving an exponential reduction in impedance compared with the smooth textile dry electrode (15.64 kΩ·cm−2 at 10 Hz, approximately 1/6 of the lowest impedance of reported electrodes). Simultaneously, the wrinkled structure formed by pre-stretching improves electrode’s stretchability (up to 910% strain) and cycle stability (R/R0 is within 1.08 after 1000 cycles at 30% strain). Furthermore, the NF-ZnO–PPy electrode has excellent breathability (2233.52 g·m−2·d−1) and good biocompatibility. Finally, as a proof of concept, the 16-channel NF-ZnO–PPy electrode can record electromyography signals in different states and parts of body for a long time ((22.03 ± 0.76) dB, which is twice that of the commercial electrode). Notably, we employ ZnO nanorods as a template to reduce impedance. This template strategy overcomes complex and expensive micro–nanomanufacturing technologies (photolithography, laser processing, etc.) and can be suitable for most flexible substrates, showing great potential in the field of soft electronics.
Hydrogel fibers have gained considerable attention, but their large-scale production and industrial application are currently constrained. The key lies in precise diameter control and industrial manufacturing with a straightforward, energy-saving, and efficient strategy. Herein, we introduce a hydrodynamic drafting spinning platform inspired by water vortices. It employs the rotation of a nonsolvent to generate vortices and further facilitate the efficient drafting of hydrogel fibers. Through supporting equipment, we have achieved impressive results, including scalable production capabilities (1 h, single channel output of 2 × 103 m of fibers) and extensive adaptability. Subsequently, by simply regulating the velocity difference between fiber extrusion and fluid vortex, hydrogel fibers can be drafted to any diameter from about 1 mm to 5 × 10–2 mm (for chitosan system). Notably, this platform endows hydrogel fibers to carry functional hydrophilic or hydrophobic drugs. Equally significant, these delicate hydrogel fibers seamlessly integrate with subsequent manufacturing technologies. This allows the production of various end products, such as fiber bundles, yarns, fabrics, and nonwovens. Furthermore, the immense potential in biomedical applications has been demonstrated after obtaining hydrogel fiber-based nonwoven as wound dressings. In summary, the hydrodynamic drafting spinning platform offers an effective solution for the large-scale production of diameter-controllable, multifunctional hydrogel fibers.
Thick, flexible electrodes are essential to simultaneously achieving flexibility and high energy density; however, mechanical failure and the sluggish movement of ions and electrons both restrict their application. Here, a thick electrode reinforced by a stainless-steel (SS) fiber three-dimensional (3D) current collector is proposed that simultaneously attains unprecedented flexibility and a high energy density. This ultra-flexible electrode is prepared by a thermally induced phase separation process. Its meso/macroporosity enhances ionic conductivity, and the 3D fiber reinforcement enhances interfacial adhesion, flexural durability, and electrical conductivity. Owing to these advantages, the fiber-reinforced electrode has a minimum bending radius of 3 mm owing to its high yield strain (13%) and attains a high energy density of 500 Wh·L−1, which is considerably higher than that of previous flexible batteries (100–350 Wh·L−1). In contrast with the same electrode coated on metal foil, which suffers from delamination, the fiber-reinforced electrode is delamination-free and outperforms in rate capability and cycling performance. Unlike conventional current collectors (foil, mesh, or foam), the SS fiber can be tailored to be distributed throughout the electrode and to fit the electrode form factor. Fiber-reinforced electrodes are also excellent at creating 3D free-form batteries, which are difficult to fabricate with conventional electrode structures.
Ultrahigh dynamic strength fibrous materials are very vital for applications in high-strain rate environments. A recent research article on Science highlights a significant advancement in polymer-carbon nanotube composite fibers, which developed a new strategy to fabricate fibrous materials with an unprecedented dynamic strength of 14 GPa by optimizing hierarchical structures. This work provides fresh mechanism insights and an effective strategy to harness the intrinsic strength of individual carbon nanotubes at the macroscale, and marks a dramatic breakthrough in the realm of ultrahigh-strength fibers.
Lightweight and flexible fiber devices are currently attracting significant interest in the field of advanced wearable electronics. However, many electroluminescent fiber devices suffer from high operating voltage and power consumption. To address this issue, a novel low-power-consumption coaxial electrophoretic display fiber (EPDF) with low-power-consumption, which consists of silver nanowire electrodes, electrophoretic microcapsule layer, polydimethylsiloxane (PDMS) encapsulation layer and PDMS substrate, was fabricated using a simple dip-coating method. The prepared fiber devices exhibit full functionality under a human-safe voltage of 30 V, featuring uniform and angle-independent contrast. Moreover, the EPDFs demonstrate excellent flexibility and mechanical stability, capable of operating properly at axial strains exceeding 50% and maintaining performance after 1000 cycles of 30% strain. The EPDFs, encapsulated with transparent PDMS, demonstrating exceptional wearability and biocompatibility. Benefiting from the distinctive bistable characteristics of electrophoretic microcapsule particles, EPDFs exhibit ultralow power consumption, and the varying light absorption capacities in different display states empower them to adapt effectively to diverse environments. These remarkable features qualify EPDFs for various outdoor wearable applications. Finally, a proof-of-concept of electrophoretic display fabric is demonstrated by weaving the as-prepared fiber with common yarn, showcasing the future perspective of wearable functional textiles entirely woven from EPD.
Alternating current electroluminescent (ACEL) fibers with wearable characteristics, such as flexibility, light weight, stitchability and comfort, are emerging in textile displays for daily applications. To construct efficient ACEL fibers, a judiciously designed and low-cost electrode is also extremely important but seems to receive less attention. Inspired by fiber dyeing, we propose a method that employs non-noble metals to design fiber electrodes by constructing microconductive channels inside commercial fibers. This method relies on the window period formed by the glass transition temperature of the PAN fibers, which is sufficiently flexible to extend to mass production at a low cost (approximately US$ 1.86/kg). The resulting ACEL fibers interwoven with a transparent fiber electrode formed a textile display with an acceptable luminescence performance of 46 cd·m−2 (160 V). Notably, a visual feedback e-textile (VFET) was constructed by integrating fiber sensors, which demonstrates the concept of wearable real-time visual monitoring and interaction. Compared with their individual counterparts, VFET has been conveniently and efficiently for visual monitoring, communication, and interaction, i.e., the visualization of physiological parameters (heartbeat, respiration, etc.) and nonverbal communications (literal or cryptographic) for special groups and specific scenes.
Non-noble metal electroluminescent (EL) fibers and accessible, sensitive, and flexible visual feedback e-textiles (VFET) capable of being integrated into smart clothing and wearable devices are proposed in this work
[graphic not available: see fulltext]
Cotton is a renewable bio-resource widely employed in human thermal management. However, it is required to further improve its cooling ability to address global warming issues posing serious threats to human activities. Herein, metacotton was produced by applying silica (SiO2)/poly(vinylidene fluoride-hexafluoropropylene) composite aerogel onto the cotton surface via microstructure finishing using the traditional textile equipment. Next, scalable metacotton fabrics with passive radiative cooling effect were obtained by weaving. The aerogel microstructure of metacotton results in excellent passive cooling capability of the fabric and endows it with superhydrophobic, insulating, and breathing properties. The metacotton fabric realizes an average cooling of 8.8 °C during summer days, showing superior cooling performance compared to the standard cotton. Notably, the metacotton fabric exhibits superhydrophobic stain-removal and wash-resistant properties, enhancing passive cooling durability. Furthermore, the method used for fabricating metacotton in this study can be applied to other fibers as well, and it is scalable and adaptable across the conventional equipment, which broadens the thermal management range in the textile industry.
To mitigate secondary damage from traditional wound dressing removals, this study pioneers an intelligent wound dressing method using a dual-modality sensor for non-invasive, real-time monitoring of the healing process. Harnessing the skin’s architectural blueprint, the dressing employs a three-layered structure with asymmetric wettability, fabricated via advanced electrospinning and screen printing techniques. Central to this design is the MXene@Sodium alginate (SA)/Polylactic acid (PLA) humidity sensor, mimicking a dermal environment with exceptional sensitivity (99%) and response time (0.6 s), ensuring sustained performance over 28 days. A chitosan sponge (CS) layer, incorporated by freeze-drying, optimizes exudate management and expedites healing. The outer layer, a hydrophobic PLA@Ag3PO4 membrane, offers robust antimicrobial efficacy by eliminating 99.99% of bacterial presence. Functionally, this outer skin analog doubles as an ultra-sensitive capacitive-type pressure sensor (199.22 kPa−1), with impressive durability over numerous cycles (1500 cycles), capturing subtle pressure fluctuations as wounds heal. In vivo results show that the dressing can prevent infection, accelerate angiogenesis and epithelial regeneration, and significantly accelerate the healing of open wounds. Integrated with a flexible sensing unit, control circuitry, and bluetooth module, this intelligent dressing paradigm articulates the nuances of wound healing dynamics, heralding a new era in smart healthcare applications.
Inspired by human skin, a three-layer intelligent wound dressing has been developed that connects wirelessly via bluetooth, enabling real-time monitoring of both humidity and pressure at the wound site. This work holds promise for expanding the applications in the field of wound dressings and advancing intelligent healthcare solutions.
The development of biomimetic scaffolds that can promote osteogenic induction and vascularization is of great importance for the repair of large bone defects. In the present study, inorganic bioactive glass (BG) and organic polycaprolactone (PCL) are effectively combined by electrospinning and electrospray techniques to construct three-dimensional (3D) BG/PCL microfibrous spheres for the repair of bulk bone defects. The hybrid fibers, as well as the as-obtained 3D structure, can mimic the composition and architecture of native bone tissues. Furthermore, the BG/PCL microfibrous spheres show excellent biocompatibility and provide sufficient space and attachment sites for cell growth. The osteogenic differentiation of bone mesenchymal stem cells is also effectively facilitated when cultured on such hybrid microfibrous spheres. In vivo investigation utilizing rat femoral condyle bone defect models demonstrates that the BG/PCL microfibrous spheres loaded with bone mesenchymal stem cells can induce angiogenesis and promote the upregulation of bone-related protein expression, thus effectively facilitating bone regeneration at the defect site. The collective findings indicate that such BG/PCL hybrid microfibrous spheres have the potential to be effective carriers of stem cells. The microfibrous spheres loaded with stem cells have promising potential to be utilized as implantable biomaterials for the repair of bone defects.
The development of an artificial ligament for promoting ligament–bone healing in anterior cruciate ligament (ACL) reconstruction still faces enormous challenges. Herein, a polyphenol–metal network (PMN) composed of propyl gallate (PG)-gallium (Ga) and -hafnium oxide (HfO2) is deposited on polyimide fiber (PIF) woven fabric (PGPH) for artificial ligament application. Compared with PIF, the surface properties (e.g., hydrophilicity) of PMN of PGPH significantly improve. The in vitro cell experiments confirm that PGPH remarkably facilitates proliferation and osteoblastic differentiation due to the synergistic effects of enhanced surface properties and the sustained release of Hf ions. Moreover, PGPH inhibits M1 macrophage polarization, thereby reducing the production of pro-inflammatory cytokines while improving anti-inflammatory cytokines secretion by favoring M2 macrophage polarization, displaying anti-inflammatory effects due to the slow release of PG. Compared with PIF, PGPH exhibits adequate antibacterial activity in vitro and effectively prevents bacterial infection in vivo because of the sustained release of Ga ions, which damages the bacterial membrane and leads to the leakage of cell components (such as proteins). The in vivo experiments reveal that PGPH obviously inhibits fibrous encapsulation formation while promoting bone regeneration for ligament–bone healing. In short, PGPH creates a favorable microenvironment for enhancing M2 macrophage polarization and osteoblastic differentiation, which facilitates ligament–bone healing, thereby exhibiting enormous promise for ACL restoration.
Radiative cooling textiles offer significant potential for enhancing personal thermal comfort amid rising global temperatures. Recently, a spectrally selective hierarchical fabric was reported to emit predominantly within the atmospheric transmission window while suppressing parasitic heat from the surrounding infrastructure, thus combating the urban heat islands. This development represents a significant advance in personal thermal management, demonstrating the potential of radiative cooling fabrics to adapt to various environmental conditions.
With the advancement of flexible bioelectronics, developing highly elastic and breathable piezoelectric materials and devices that achieve conformal deformation, synchronous electromechanical coupling with the human body and high-fidelity collection of biological information remains a significant challenge. Here, a nanoconfinement self-assembly strategy is developed to prepare elastic phenylalanine dipeptide (FF) crystal fibers, in which FF crystals form a unique Mortise-Tenon structure with oriented styrene-block-butadiene-block-styrene molecular beams and thereby obtain elasticity (≈1200%), flexibility (Young’s modulus: 0.409 ± 0.031 MPa), piezoelectricity (macroscopic d33: 10.025 ± 0.33 pC N−1), breathability, and physical stability. Furthermore, elastic FF crystal fibers are used to develop a flexible human physiological movement sensing system by integrating Ga–In alloy coating and wireless electronic transmission components. The system can undergo conformal deformation with human skin and achieve high-fidelity capture of biological information originating from human body motions to prevent diseases (such as Parkinson’s disease). In addition, this system also displays superior sensitivity and accuracy in detecting subtle pressure changes in vivo during heartbeats, respiration, and diaphragm movement. Therefore, elastic FF crystal fibers hold great potential for developing new flexible electromechanical sensors that are capable of conformal deformation with the human body, enabling precision medical diagnosis and efficient energy harvesting.
A schematic illustration depicting the utilization of styrene-block-butadiene-block-styrene (SBS) fibers as a self-assembly nanoconfinement carrier for phenylalanine dipeptide (FF) has been provided, showcasing the formation mechanism of elastic FF crystal fibers featuring a distinctive Mortise-Tenon structure.
Polymer-based thermoelectric (TE) films feature several prominent merits, involving available multi-component compositions, versatile patterning fabrication, and readily integration. Therefore, these materials hold a huge potential as the continuous power supply for wearable devices. Herein, we reported the preparation of a series of vinylene-linked triazole-cored covalent organic frameworks (COFs) by Knoevenagel condensation of 2, 4, 6-trimethyl-1, 3, 5-triazine as the core monomer. The as-prepared COFs tend to generate the nano- or micro-fiber morphologies with tunable lengths and diameters through changing the polyphenylene building blocks. Accordingly, these COF fibers could be readily composited with single-walled carbon nanotubes (SWCNTs) to form the flexible free-standing films upon a simple vacuum filtration method. A film sample containing 30 wt% g-C18N3-COF exhibited the highest power factor of 68.93 μW/(m K2) at 420 K. The manipulated 4-leg flexible thermoelectric generator (f-TEG) released a maximum output power and power density of 343.5 nW and 0.32 W/m2 at a temperature difference of 35 K. After bending for 1000 times at a radius of 15 mm, the resistance change rate of the as-fabricated f-TEGs was less than 5%, exhibiting excellent stability and flexibility. This work might not only broaden the potential application scope of COF materials but also provide a new fabrication strategy towards energy harvesting.
The rapid growth of wearable technology has significantly enhanced the capabilities of wearable sensors, transitioning from simple attachments of rigid electronics to the more comfortable and adaptable integration with soft substrates. Among these, flexible piezoresistive pressure sensors are particularly notable for their straightforward and reliable signal readout. Fiber, yarn, and textile-based sensors, which allow for multiscale material and structural engineering, present ideal solutions for achieving sensors with excellent wearability, sensitivity, and scalability potential. Innovations in materials and the advancement of artificial intelligence (AI) have further enhanced sensor performance, adding multifunctional capabilities and broadening their applications. This review systematically examines fiber, yarn, and textile-based piezoresistive pressure sensors, covering fundamental mechanisms, key performance metrics, conductive and substrate materials, structural designs, fabrication techniques, multifunctional integrations, and advanced applications in healthcare, fitness, and human–machine interaction, augmented by machine learning (ML). Finally, the review discusses sensor design and technical considerations, material–structure–property engineering, scalable production, performance evaluation, and offers recommendations and prospects for future sensor research and development. This comprehensive overview aims to provide a deeper understanding of current innovations and challenges, facilitating the advancement of flexible and intelligent wearable sensing technologies.
Harvesting fog composed of differently charged droplets offers a potential solution to freshwater crises. Leveraging electrostatic attraction between charged surfaces and droplets to enhance capture efficiency represents an efficacious approach for achieving efficient fog harvesting. However, existing strategies to enhance electrostatic attraction by introducing charges on the surface pose persistence challenges. Here, an asymmetric wettability polyacrylonitrile (PAN) fiber (named Janus-PAN) with stable high surface potential via in-situ molecular confined modification is proposed for fog harvesting. By coupling the high capture efficiency generated by persistent electrostatic interaction and the directional self-driven transport supported by wettability gradient, Janus-PAN achieves a water collection rate (WCR) of 1775 mg/cm2/h, which is 2.6 times higher than that of fibers with low surface potential and no wetting gradient. Moreover, the potential application of the Janus-PAN harp in agricultural irrigation is demonstrated. The previously unreported surface potential control strategy shown here can potentially upgrade the fiber-based fog harvesting materials.
Peripheral nerve defects present complex orthopedic challenges with limited efficacy of clinical interventions. The inadequate proliferation and dysfunction of Schwann cells within the nerve scaffold impede the effectiveness of nerve repair. Our previous studies suggested the effectiveness of a magnesium-encapsulated bioactive hydrogel in repairing nerve defects. However, its rapid release of magnesium ions limited its efficacy to long-term nerve regeneration, and its molecular mechanism remains unclear. This study utilized electrospinning technology to fabricate a MgO/MgCO3/polycaprolactone (PCL) multi-gradient nanofiber membrane for peripheral nerve regeneration. Our findings indicated that by carefully adjusting the concentration or proportion of rapidly degradable MgO and slowly degradable MgCO3, as well as the number of electrospun layers, the multi-gradient scaffold effectively sustained the release of Mg2+ over a period of 6 weeks. Additionally, this study provided insight into the mechanism of Mg2+-induced nerve regeneration and confirmed that Mg2+ effectively promoted Schwann cell proliferation, migration, and transition to a repair phenotype. By employing transcriptome sequencing technology, the study identified the Wingless/integrase-1 (Wnt) signaling pathway as a crucial mechanism influencing Schwann cell function during nerve regeneration. After implantation in 10 mm critically sized nerve defects in rats, the MgO/MgCO3/PCL multi-gradient nanofiber combined with a 3D-engineered PCL nerve conduit showed enhanced axonal regeneration, remyelination, and reinnervation of muscle tissue 12 weeks post-surgery. In conclusion, this study successfully developed an innovative multi-gradient long-acting MgO/MgCO3/PCL nanofiber with a tunable Mg2+ release property, which underscored the molecular mechanism of magnesium-encapsulated biomaterials in treating nervous system diseases and established a robust theoretical foundation for future clinical translation.
Osteoporosis is a degenerative disease caused by an imbalance between osteoblast and osteoclast activity. Repairing osteoporotic bone defects is challenging due to decreased osteogenesis, increased osteoclast activity, and impaired angiogenesis. To address this challenge, a novel scaffold, inspired by the structure of multilayer fishing nets, is developed through a combination of template-assisted electrospinning and advanced three-dimensional (3D) printing technologies. The 3D nanofiber scaffold exhibits a hierarchical porous architecture. This design maintains the high specific surface area and extracellular matrix (ECM) mimicry of the nanofiber membrane. Additionally, the sparsely distributed nanofibers within the mesh-like structure facilitate cell infiltration. This unique topological configuration, particularly the strontium-hydroxyapatite (Sr-HAp)-enriched polycaprolactone/silk fibroin nanofibers, plays a critical role in synergistically promoting angiogenesis, enhancing osteogenesis, and suppressing osteoclast differentiation. In an osteoporotic cranial bone defect model, the scaffold demonstrates an exceptional repair efficiency of nearly 100% within 8 weeks, marked by significant new bone formation throughout the implanted area. In conclusion, our approach, which leverages intricate biomimicry and strategic active ion release, emerges as a highly promising strategy for repairing osteoporotic bone defects.
The acute pain induced by clinical procedures, such as venipuncture, dental operations, and dermatological treatments, as well as postoperative pain, drives the advancement of anesthetic techniques aimed at alleviating discomfort. This situation underscores the ongoing significance of effective pain management strategies within the field of anesthesia. This paper presents an integrated iontophoresis (ITP)-driven fiber-based microneedle patch (IFMP) regulated by a smartphone for controllable, long-lasting lidocaine transdermal delivery. The IFMP integrates pure cotton fiber canvas-based dissolving microneedles (MNs) with ITP into a patch, with the MNs tips and gel layers significantly increasing the drug-loading capacity, achieving a one-step drug administration strategy of “dissolution, diffusion, and ITP.” Lidocaine is released via the microchannels of MNs by passive diffusion. Additionally, an electric current initiates active ITP for lidocaine delivery, creating synergy. User-requirement-based drug release by precisely modulating electrical signals in rat pain models is described herein. A smartphone application enables precise dosage control. It offers three different delivery modes: single-dose, pulse delivery, and sustained-release, ensuring rapid onset, and long-lasting pain relief. This versatility makes the system suitable for various pain conditions. The IFMP represents a promising system for patient-controlled local analgesia treatment, enabling active and long-term local self-controlled pain management in a safe and regulated manner.
The iontophoresis-driven fiber-based microneedle patch combines fiber-based dissolving microneedles with iontophoresis, facilitating controlled lidocaine release through diffusion and electrical activation for enhanced effect. Precise modulation of electrical signals allows user-requirement-based drug release in rat pain models. A smart application supports precise dosing in single-dose, pulse, or sustained-release modes, ensuring efficient and prolonged pain management.
The rapid advancement of personalized healthcare brings forth a myriad of self-powered integrated sweat fabric systems. However, challenges such as alkaline by-products, low open-circuit voltage and output power have made them unsuitable for the continuously powering biosensors. Here, we have designed a sweat-activated polyaniline/single-wall carbon nanotube||Zinc (PANI/SWCNTs||Zn) battery fabric featuring multiple redox states. This innovative battery achieves a high open-circuit voltage of 1.2 V within 1.0 s and boasts an impressive power density of 2.5 mW cm−2 due to the rapid solid–liquid two-phase electronic/ionic transfer interface. In-depth characterization reveals that the discharge mechanism involves the reduction of emeraldine salt to leucoemeraldine without oxygen reduction. By integrating this system seamlessly, the sweat-activated batteries can directly power a patterned light-emitting diode and a multiplexed sweat biosensor, while wirelessly transmitting data to a user interface via Bluetooth. This strategic design offers safety warnings and continuous real-time health monitoring for night walking or running. This work paves the way for the development of an efficient and sustainable energy-autonomous electronic fabric system tailored for individual health monitoring.
Highly power-density sweat-activated PANI/SWCNTs||Zn fiber battery has been fabricated by rapid reduction of emeraldine salt to leucoemeraldine. Through seamless system integration, the thus-fabricated sweat-activated battery pack can power a multiplexed sweat biosensor, demonstrating the feasibility of a sustainable energy-autonomous electronic fabric system for continuous individual health monitoring.
Excessive uptake of purine and glucose can lead to hyperglycemia and hyperuricemia, mediated by specific intestinal transport proteins. Currently, there is a deficiency in targeted regulation of these proteins. In this study, we introduce an oral approach for targeted modulation using electrospun core–shell short-fibers that settle on the intestinal mucosa. These fibers, designed for the controlled in situ release of phlorizin—a multi-transporter inhibitor—are crafted through a refined electrospinning-homogenizing process using polylactic acid and gelatin. Phlorizin is conjugated via a phenyl borate ester bond. Furthermore, a calcium alginate shell ensures intestinal disintegration triggered by pH changes. These fibers adhere to the mucosa due to their unique structure, and phlorizin is released in situ post-ingestion through glucose-sensitive cleavage of the phenyl borate ester bond, enabling dual-target inhibition of intestinal transporter proteins. Both in vitro and in vivo studies confirm that the short-fibers possess intestine-settling and glucose-responsive properties, facilitating precise control over transport proteins. Using models of hyperuricemia and diabetes in mice, treatment with short-fibers results in reductions of 49.6% in blood uric acid and 17.8% in glucose levels, respectively. Additionally, 16S rRNA sequencing indicates an improved intestinal flora composition. In conclusion, we have developed an innovative oral strategy for the prevention of hyperglycemia and hyperuricemia.
Excess biological fluids around skin wounds can lead to infections and impede the healing process. Researchers have extensively studied dressings with varying water contents for wound care. However, hydrophilic and hydrophobic-hydrophilic dressings often face challenges such as slow fluid transfer and excessive retention. This study introduces an innovative approach involving the use of superhydrophobic–hydrophobic–hydrophilic dual-gradient electrospun nanofibers to form a 3D biomimetic nanofiber scaffold (3D BNSF). The 3D BNSF is composed of hydrophobic polycaprolactone and thermoplastic polyurethane, along with antibacterial, superhydrophobic nano-chitin particles. In vitro and in vivo experiments have demonstrated that this scaffold exhibits excellent antibacterial properties and compatibility with cells, facilitating complete wound healing and regeneration. This study offers a new perspective on the targeted acceleration of wound healing, with the potential to become an alternative strategy for clinical applications.
Integrating passive radiative cooling techniques with wearable fabrics provides a zero-energy strategy for preventing people from heat stress and reducing cooling demand. However, developing wearable passive radiative cooling fabrics with ideal optical characteristics, wearability, and scalability has consistently presented a challenge. Here, we developed a metafabric with high sunlight reflectivity (88.07%) according to the design of an individual photonic structure, which demonstrates total internal reflection with the tailored triangular light track. A skin simulator covered by metafabric exhibits a temperature drop of 7.17 °C in the daytime compared with regular polyester fabric in an outdoor cooling test. Consequently, it was theoretically proven to exert a substantial influence on achieving a significant cooling demand reduction of 52.69–185.79 W·m−2. These characteristics, coupled with structural stability, air-moisture permeability, sufficient wearability, and scalability, allowed the metafabric to provide a solution for introducing zero-energy passive radiative cooling technique into human body cooling.
Silk fabric-based wearable electronics stand among the most effective materials for the electronic skin function, due to their flexibility, robust mechanical features, and bio-compatibility. However, the development of fabric sensors is restricted by limited resilience and the weak binding force of conductive materials to fabrics. Herein, a general strategy is developed for designing SF wearable devices with high elasticity and conductivity, combining the macroscopic design of three-dimensional SF structure, microscopic plasma-activated β-FeOOH scaffolds and in situ polymerized polypyrrole. Significantly, the fabric exhibits a maximum tensile strain of up to 30%, high conductivity (resistivity of 0.3 Ω·cm), fast response in sensing (50 ms), and excellent durability (> 1500 cycles). The possible mechanism of plasma activation of akaganeite scaffolds to produce zero-valent iron and induce pyrrole polymerization is analyzed. In addition, the e-textiles are demonstrated for personal-care management, including motion recognition, information interaction and electric heating. This work provides a novel guide to constructing advanced fabric-sensor devices capable of high conductivity and elasticity, which are expected to be applied in the fields of health monitoring, smart homes, and virtual reality interaction.
The three-dimensional conductive silk wearable devices (3D-CSWD) combine redesigning the fabric structure, employing plasma treatment to activate β-FeOOH scaffolds, and inducing in situ polymerization of polypyrrole. These fabric devices are capable of withstanding large mechanical stretching cycles and maintain high conductivity after washing, which can be used to monitor a wide range of human body motions, including pulse monitoring, breathing monitoring, swallowing actions, and wrist and finger bending movements. Furthermore, they can be used for electric heating and information exchange by transmitting morse code.