Journal home Browse Most accessed

Most accessed

  • Select all
  • Qiang Yao
    Advanced Fiber Materials, 2024, 6(5): 1253-1255. https://doi.org/10.1007/s42765-024-00482-w
  • Sufang Chen, Weifeng Yao, Zhendong Ding, Jingyi Du, Tienan Wang, Xue Xiao, Linan Zhang, Jing Yang, Yu Guan, Chaojin Chen, Yu Tao, Mingqiang Li, Haixia Wang, Ziqing Hei
    Advanced Fiber Materials, 2024, 6(5): 1428-1445. https://doi.org/10.1007/s42765-024-00422-8

    Nociceptive-selective analgesia is often preferred over traditional methods, providing effective pain relief with minimum systemic side effects.The quaternary lidocaine derivative QX-314, is a promising local anesthetic for achieving selective analgesia. However, due to its inability to penetrate the cell membrane, its efficacy is limited to intracellular administration. In this study, we aimed to develop an injectable electrospun fiber-hydrogel composite comprising QX-314-loaded poly(ε-caprolactone) electrospun fiber and capsaicin (Cap)-loaded F127 hydrogel (Fiber-QX314/Gel-Cap composite) for long-term and nociceptive-selective analgesia. The sequential and sustained release mechanism of Cap and QX-314 helped remarkably extend the sensory blockade duration up to 44.0 h, and prevent motor blockade. Specifically, our findings indicated that QX-314 can traverse the cell membrane through the transient receptor potential vanilloid 1 channel activated by Cap, thus targeting the intracellular Na+ channel receptor to achieve selective analgesia. Moreover, the composite effectively alleviated incision pain by suppressing c-Fos expression in the dorsal root ganglion and reducing the activation of glial cells in the dorsal horn of the spinal cord. Consequently, the Fiber-QX314/Gel-Cap composite, designed for exceptional biosafety and sustained selective analgesia, holds great promise as a non-opioid analgesic.

  • Yutang Kang, Ze-Xian Low, Dong Zou, Zhaoxiang Zhong, Weihong Xing
    Advanced Fiber Materials, 2024, 6(5): 1306-1342. https://doi.org/10.1007/s42765-024-00427-3

    Air pollutants, which are composed of diverse components such as particulate matter (PM), volatile organic compounds (VOCs), nitrogen oxides (NO x), sulfur dioxide (SO2), and pathogenic microorganisms, have adverse effects on both the ecosystem and human health. While existing air purification technologies can effectively eliminate these pollutants through multiple processes targeting specific components, they often entail high energy consumption, maintenance costs, and complexity. Recent developments in air purification technology based on multifunctional nanofibrous membranes present a promising single-step solution for the effective removal of diverse air pollutants. Through synergistic integration with functional materials, other functional materials, such as those with catalytic, adsorption, and antimicrobial properties, can be incorporated into nanofibrous membranes. In this review, the design concepts and fabrication strategies of multifunctional nanofibrous membranes to facilitate the integrated removal of multiple air pollutants are explored. Additionally, nanofibrous membrane preparation methods, PM removal mechanisms, and performance metrics are introduced. Next, methods for removing various air pollutants are outlined, and different air purification materials are reviewed. Finally, the design approaches and the state-of-the-art of multifunctional nanofibrous membranes for integrated air purification are highlighted.

  • Xin Yang, Yankuan Tian, Rong Zhou, Feng Xia, Yifei Gong, Chengming Zhang, Feng Ji, Liu Liu, Faxue Li, Ruiyun Zhang, Jianyong Yu, Tingting Gao
    Advanced Fiber Materials, 2024, 6(5): 1446-1455. https://doi.org/10.1007/s42765-024-00423-7

    It is a worldwide challenge to achieve an efficient cleaning of heavy oil at ambient temperature. Conventional cleanup methods for high-viscosity oil spills exhibit low absorption efficiency and have severe practical operating limits. Herein, inspired by the passive transport process in the Salvinia cucullata, a solar-heated and joule-heated textile-based absorber using the scalable electrostatic flocking technique. Benefiting from the efficient photothermal and electrothermal conversion effects, the textile-based absorber, with oleophilic and aligned channels, facilitates thermal conduction and hence enhances heavy oil absorption. The absorber is highly efficient for organic solvents (chloroform and dichloromethane) and low-viscosity oils (silicone oil, gasoline, and diesel oil). The surface temperature of the textile absorber rises rapidly to 92 °C (114 °C) in 120 s (240 s) under one sun irradiation (or 5 V voltage), resulting in a sharp drop in the viscosity of the heavy oil and then achieving an ultrahigh absorption rate (2647 kg h−1 m−2) and fast equilibrium time (25 s). Rapid absorption rate significantly reduces spill cleanup time and spill spreading area, hence alleviating the environmental harm caused by oil spills as much as possible. The proposed solar-heated and joule-heated textile-based absorbers with aligned channels show great potential for efficient heavy oil absorption.