Multifunctional Nanofibrous Membranes for Integrated Air Purification

Yutang Kang, Ze-Xian Low, Dong Zou, Zhaoxiang Zhong, Weihong Xing

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (5) : 1306-1342. DOI: 10.1007/s42765-024-00427-3
Review

Multifunctional Nanofibrous Membranes for Integrated Air Purification

Author information +
History +

Abstract

Air pollutants, which are composed of diverse components such as particulate matter (PM), volatile organic compounds (VOCs), nitrogen oxides (NO x), sulfur dioxide (SO2), and pathogenic microorganisms, have adverse effects on both the ecosystem and human health. While existing air purification technologies can effectively eliminate these pollutants through multiple processes targeting specific components, they often entail high energy consumption, maintenance costs, and complexity. Recent developments in air purification technology based on multifunctional nanofibrous membranes present a promising single-step solution for the effective removal of diverse air pollutants. Through synergistic integration with functional materials, other functional materials, such as those with catalytic, adsorption, and antimicrobial properties, can be incorporated into nanofibrous membranes. In this review, the design concepts and fabrication strategies of multifunctional nanofibrous membranes to facilitate the integrated removal of multiple air pollutants are explored. Additionally, nanofibrous membrane preparation methods, PM removal mechanisms, and performance metrics are introduced. Next, methods for removing various air pollutants are outlined, and different air purification materials are reviewed. Finally, the design approaches and the state-of-the-art of multifunctional nanofibrous membranes for integrated air purification are highlighted.

Keywords

Air purification / Nanofibrous membrane / Air filter / Multifunctionalization / Air pollutants

Cite this article

Download citation ▾
Yutang Kang, Ze-Xian Low, Dong Zou, Zhaoxiang Zhong, Weihong Xing. Multifunctional Nanofibrous Membranes for Integrated Air Purification. Advanced Fiber Materials, 2024, 6(5): 1306‒1342 https://doi.org/10.1007/s42765-024-00427-3

References

[1.]
Lewis AC. The changing face of urban air pollution. Science, 2018, 359: 744-745.
CrossRef Google scholar
[2.]
Song L, Zhou JF, Wang C, Meng G , Li YF, Jarin M, et al. Airborne pathogenic microorganisms and air cleaning technology development: a review. J Hazard Mater, 2022, 424: 127429.
CrossRef Google scholar
[3.]
Akimoto H. Global air quality and pollution. Science, 2003, 302: 1716-1719.
CrossRef Google scholar
[4.]
European Commission. Air and toxic pollutants. 2023 https://edgar.jrc.ec.europa.eu/air_pollutants. Accessed 18 March 2024.
[5.]
Institute for Health Metrics and Evaluation. Global burden of disease collaborative network. 2020. http://ghdx.healthdata.org/gbd-results-tool. Accessed 18 March 2024
[6.]
[7.]
Tong SL. Air pollution and disease burden. Lancet Planetary Health, 2019, 3: e49-e50.
CrossRef Google scholar
[8.]
Rajagopalan S, Al-Kindi SG, Brook RD. Air pollution and cardiovascular disease. J Am Coll Cardiol, 2018, 72: 2054-2070.
CrossRef Google scholar
[9.]
Choi M, Kim Y, Park S, Ka D, Kim T, Lee S, et al. Functionalized polyurethane-coated fabric with high breathability, durability, reusability, and protection ability. Adv Funct Mater, 2021, 31: 2101511.
CrossRef Google scholar
[10.]
Frontera A, Martin C, Vlachos K, Sgubin G. Regional air pollution persistence links to COVID-19 infection zoning. J Infect, 2020, 81: 318-356.
CrossRef Google scholar
[11.]
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci Total Environ, 2020, 738: 139825.
CrossRef Google scholar
[12.]
Zhan J, Feng Z, Liu P, He X, He Z, Chen TZ, et al. Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer. Environ Pollut, 2021, 285: 117444.
CrossRef Google scholar
[13.]
Palmer PI, Marvin MR, Siddans R, Kerridge BJ, Moore DP. Nocturnal survival of isoprene linked to formation of upper tropospheric organic aerosol. Science, 2022, 375: 562-566.
CrossRef Google scholar
[14.]
Havard University. State of global air 2020: A special report on global exposure to air pollution and its health impacts. 2021. https://lib.icimod.org/record/35533. Accessed 18 March 2024.
[15.]
Park S, Joe YH, Shim J, Park H, Shin WG. Non-uniform filtration velocity of process gas passing through a long bag filter. J Hazard Mater, 2019, 365: 440-447.
CrossRef Google scholar
[16.]
Gao S, Zhang D, Fan Y, Lu C. A novel gas-solids separator scheme of coupling cyclone with circulating granular bed filter (C-CGBF). J Hazard Mater, 2019, 362: 403-411.
CrossRef Google scholar
[17.]
Zheng CH, Zhang H, Liu XT, Wang YF, Gao WC, Zheng H, et al. Effect of dust layer in electrostatic precipitators on discharge characteristics and particle removal. Fuel, 2020, 278: 118335.
CrossRef Google scholar
[18.]
Mao Y, Pu W, Zhang H, Zhang Q, Song Z, Chen K, et al. Orthogonal experimental design of an axial flow cyclone separator. Chem Eng Process, 2019, 144: 107645.
CrossRef Google scholar
[19.]
Zhang JP, Zha ZT, Che P, Ding HL, Pan WG. Influences of inlet height and velocity on main performances in the cyclone separator. Particul Sci Technol, 2019, 37: 669-676.
CrossRef Google scholar
[20.]
Wang Z, Pan ZJ, Wang JG, Zhao RZ. A novel hierarchical structured poly (lactic acid)/titania fibrous membrane with excellent antibacterial activity and air filtration performance. J Nanomater, 2016, 2016: 6272983.
CrossRef Google scholar
[21.]
Hung CH, Leung WW-F. Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol, 2011, 79: 34-42.
CrossRef Google scholar
[22.]
Yang CT, Miao G, Pi YH, Xia QB, Wu JL, Li Z, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem Eng J, 2019, 370: 1128-1153.
CrossRef Google scholar
[23.]
Zhu LL, Shen DK, Luo KH. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J hazard mater, 2020, 389: 122102.
CrossRef Google scholar
[24.]
Damma D, Ettireddy PR, Reddy BM, Smirniotis PG. A review of low temperature NH3-SCR for removal of NOx. Catalysts, 2019, 9: 349.
CrossRef Google scholar
[25.]
Liu GZ, Tian YJ, Zhang BF, Wang L, Zhang XW. Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation. J Hazard Mater, 2019, 367: 568-576.
CrossRef Google scholar
[26.]
Cui G, Yang DZ, Qi HB. Efficient SO2 absorption by anion-functionalized deep eutectic solvents. Ind Eng Chem Res, 2021, 60(12): 4536-4541.
CrossRef Google scholar
[27.]
Wisniewska M, Szylak-Szydlowski M. The air and sewage pollutants from biological waste treatment. Processes, 2021, 9: 250.
CrossRef Google scholar
[28.]
Zhu MM, Han JQ, Wang F, Shao W, Xiong RH, Zhang QL, et al. Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng, 2017, 302: 1600353.
CrossRef Google scholar
[29.]
Wang C, Yu F, Zhu MY, Wang XG, Dan JM, Zhang JL, et al. Microspherical MnO2–CeO2–Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NO x with NH3 at 50–150 °C. Chem Eng J, 2018, 346: 182-192.
CrossRef Google scholar
[30.]
Gonzalez-Martin J, Kraakman NJR, Perez C, Lebrero R, Munoz R. A state-of-the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere, 2021, 262: 128376.
CrossRef Google scholar
[31.]
Chua MH, Cheng WR, Goh SS, Kong JH, Li B, Lim JY, et al. Face masks in the new COVID-19 normal: materials, testing, and perspectives. Research, 2020, 2020: 1.
CrossRef Google scholar
[32.]
Dai ZJ, Zhu JQ, Yan JQ, Su JF, Gao YF, Zhang X, et al. An advanced dual-function MnO2-fabric air filter combining catalytic oxidation of formaldehyde and high-efficiency fine particulate matter removal. Adv Funct Mater, 2020, 30: 2001488.
CrossRef Google scholar
[33.]
Lou YY, Wang B, Jiayu M, Renfeng Y, Xu J, Fang L, et al. A versatile electrospun polylactic acid nanofiber membrane integrated with halloysite nanotubes for indoor air purification, disinfection, and photocatalytic degradation of pollutants. Sep Purif Technol, 2023, 323: 124371.
CrossRef Google scholar
[34.]
Shao ZG, Chen HT, Wang QF, Kang GY, Wang X, Li WW, et al. High-performance multifunctional electrospun fibrous air filter for personal protection: a review. Sep Purif Technol, 2022, 302: 122175.
CrossRef Google scholar
[35.]
Russo F, Castro-Muñoz R, Santoro S, Galiano F, Figoli A. A review on electrospun membranes for potential air filtration application. Sep Purif Technol, 2022, 10:108452
[36.]
Yang YC, Li XS, Zhou ZY, Qiu QH, Chen WJ, Huang JY, et al. Ultrathin, ultralight dual-scale fibrous networks with high-infrared transmittance for high-performance, comfortable and sustainable PM0.3 filter. Nat Commun, 2024, 15: 1586.
CrossRef Google scholar
[37.]
Liu H, Zhu YT, Zhang CW, Zhou YQ, Yu DG. Electrospun nanofiber as building blocks for high-performance air filter: a review. Nano Today, 2024, 55: 102161.
CrossRef Google scholar
[38.]
Sepahvand S, Kargarzadeh H, Jonoobi M, Ashori A, Ismaeilimoghadam S, Varghese RT, et al. Recent developments in nanocellulose-based aerogels as air filters: a review. Int J Biol Macromol, 2023, 246: 125721.
CrossRef Google scholar
[39.]
Chen J, Gong SK, Gong TW, Yang XH, Guo HY. Stackable direct current triboelectric-electromagnetic hybrid nanogenerator for self-powered air purification and quality monitoring. Adv Energy Mater, 2023, 13: 2203689.
CrossRef Google scholar
[40.]
Feng SS, Zhong ZX, Wang YQ, Xing WH, Drioli E. Progress and perspectives in PTFE membrane: preparation, modification, and applications. J Membr Sci, 2018, 549: 332-349.
CrossRef Google scholar
[41.]
Payet S, Boulaud D, Madelaine G, Renoux A. Penetration and pressure drop of a HEPA filter during loading with submicron liquid particles. J Aerosol Sci, 1992, 23: 723-735.
CrossRef Google scholar
[42.]
Wang FH, Hao SS, Dong BB, Ke NW, Khan NZ, Hao LY, et al. Porous-foam mullite-bonded SiC-ceramic membranes for high-efficiency high-temperature particulate matter capture. J Alloy Compd, 2022, 893: 162231.
CrossRef Google scholar
[43.]
Deng YK, Lu T, Cui JX, Samal SK, Xiong RH, Huang CB. Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: a review. Sep Purif Technol, 2021, 277: 119623.
CrossRef Google scholar
[44.]
Li HX, Song J, Tan XY, Jin YG, Liu SM. Preparation of spiral porous stainless steel hollow fiber membranes by a modified phase inversion–sintering technique. J Membr Sci, 2015, 489: 292-298.
CrossRef Google scholar
[45.]
Zuo FL, Zhang SC, Liu H, Fong H, Yin X, Yu JY, Ding B. Free-standing polyurethane nanofiber/nets air filters for effective PM capture. Small, 2017, 13: 1702139.
CrossRef Google scholar
[46.]
Lee S, Cho AR, Park D, Kim JK, Han KS, Yoon I-J, et al. Reusable polybenzimidazole nanofiber membrane filter for highly breathable pm2.5 dust proof mask. ACS Appl Mater Interfaces, 2019, 11: 2750-2757.
CrossRef Google scholar
[47.]
Chen X, Wan CX, Yu R, Meng LP, Wang DL, Duan T, et al. Fabrication of amidoximated polyacrylonitrile nanofibrous membrane by simultaneously biaxial stretching for uranium extraction from seawater. Desalination, 2020, 486: 114447.
CrossRef Google scholar
[48.]
Cui JX, Li FH, Wang YL, Zhang QL, Ma WJ, Huang CB. Electrospun nanofiber membranes for wastewater treatment applications. Sep Purif Technol, 2020, 250: 117116.
CrossRef Google scholar
[49.]
Xue JJ, Wu T, Dai YQ, Xia YN. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev, 2019, 119: 5298-5415.
CrossRef Google scholar
[50.]
Wang QF, Wei YZ, Li WB, Luo XZ, Zhang XY, Di JC, Yu JH. Polarity-dominated stable N97 respirators for airborne virus capture based on nanofibrous membranes. Angew Chem Int Ed Engl, 2021, 133: 23949-23955.
CrossRef Google scholar
[51.]
Vural M, Behrens AM, Ayyub OB, Ayoub JJ, Kofinas P. Sprayable elastic conductors based on block copolymer silver nanoparticle composites. ACS Nano, 2015, 9: 336-344.
CrossRef Google scholar
[52.]
Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LH. Solution blow spinning: a new method to produce micro-and nanofibers from polymer solutions. J Appl Polym Sci, 2009, 113: 2322-2330.
CrossRef Google scholar
[53.]
Wu JJ, Akampumuza O, Liu PH, Quan Z, Zhang HN, Qin XH, et al. 3D structure design and simulation for efficient particles capture: the influence of nanofiber diameter and distribution. Mater Today Commun, 2020, 23: 100897.
CrossRef Google scholar
[54.]
Gong XB, Jin CF, Yu JY, Zhang SC, Ding B. Scalable fabrication of electrospun true-nanoscale fiber membranes for effective selective separation. Nano Lett, 2023, 23: 1044-1051.
CrossRef Google scholar
[55.]
Li P, Wang C, Zhang Y, Wei F. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes. Small, 2014, 10: 4543-4561.
CrossRef Google scholar
[56.]
Maze B, Vahedi Tafreshi H, Wang Q, Pourdeyhimi B. A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures. J Aerosol Sci, 2007, 38: 550-571.
CrossRef Google scholar
[57.]
Kurumada K, Kitamura T, Fukumoto N, Oshima M, Tanigaki M, Kanazawa S. Structure generation in PTFE porous membranes induced by the uniaxial and biaxial stretching operations. J Membr Sci, 1998, 149: 51-57.
CrossRef Google scholar
[58.]
Yu N, Zhu X, Feng S, Zhang C, Liu L, Ju S, et al. A breathable PTFE membrane for enhanced moxibustion process and occupational health protection. J Membr Sci, 2022, 665: 120579.
CrossRef Google scholar
[59.]
Feng J, Zhang G, MacInnis K, Olah A, Baer E. Formation of microporous membranes by biaxial orientation of compatibilized PP/Nylon 6 blends. Polymer, 2017, 123: 301-310.
CrossRef Google scholar
[60.]
Wan C, Cao T, Chen X, Meng L, Li L. Fabrication of polyethylene nanofibrous membranes by biaxial stretching. Mater Today Commun, 2018, 17: 24-30.
CrossRef Google scholar
[61.]
Li T, Dai Y, Li J, Guo S, Xie G. A high-barrier PP/EVOH membrane prepared through the multistage biaxial-stretching extrusion. J Appl Polym Sci, 2017, 134: 45016.
CrossRef Google scholar
[62.]
Ranjbarzadeh-Dibazar A, Shokrollahi P, Barzin J, Rahimi A. Lubricant facilitated thermo-mechanical stretching of PTFE and morphology of the resulting membranes. J Membr Sci, 2014, 470: 458-469.
CrossRef Google scholar
[63.]
Sun Y, Zhang X, Zhang M, Ge M, Wang J, Tang Y, et al. Rational design of electrospun nanofibers for gas purification: principles, opportunities, and challenges. Chem Eng J, 2022, 446: 137099.
CrossRef Google scholar
[64.]
Zhang S, Liu H, Yu J, Luo W, Ding B. Microwave structured polyamide-6 nanofiber/net membrane with embedded poly(m-phenylene isophthalamide) staple fibers for effective ultrafine particle filtration. J Mater Chem A, 2016, 4: 6149-6157.
CrossRef Google scholar
[65.]
Zhang S, Tang N, Cao L, Yin X, Yu J, Ding B. Highly integrated polysulfone/polyacrylonitrile/polyamide-6 air filter for multilevel physical sieving airborne particles. ACS Appl Mater Interfaces, 2016, 8: 29062-29072.
CrossRef Google scholar
[66.]
Chen M, Jiang J, Feng S, Low Z-X, Zhong Z, Xing W. Graphene oxide functionalized polyvinylidene fluoride nanofibrous membranes for efficient particulate matter removal. J Membr Sci, 2021, 635: 119463.
CrossRef Google scholar
[67.]
Miao Y-E, Wang R, Chen D, Liu Z, Liu T. Electrospun self-standing membrane of hierarchical SiO2@γ-AlOOH (Boehmite) core/sheath fibers for water remediation. ACS Appl Mater Interfaces, 2012, 4: 5353-5359.
CrossRef Google scholar
[68.]
Viswanathamurthi P, Bhattarai N, Kim HY, Lee DR. Vanadium pentoxide nanofibers by electrospinning. Scripta Mater, 2003, 49: 577-581.
CrossRef Google scholar
[69.]
Yuh J, Nino JC, Sigmund WM. Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning. Mater Lett, 2005, 59: 3645-3647.
CrossRef Google scholar
[70.]
Ruiz-Cornejo JC, Sebastián D, Lázaro MJ. Synthesis and applications of carbon nanofibers: a review. Rev Chem Eng, 2020, 36: 493-511.
CrossRef Google scholar
[71.]
Awad R, Mamaghani AH, Boluk Y, Hashisho Z. Synthesis and characterization of electrospun PAN-based activated carbon nanofibers reinforced with cellulose nanocrystals for adsorption of VOCs. Chem Eng J, 2021, 410: 128412.
CrossRef Google scholar
[72.]
Zhu X, Zhang S, Yu X, Zhu X, Zheng C, Gao X, et al. Controllable synthesis of hierarchical MnO x/TiO2 composite nanofibers for complete oxidation of low-concentration acetone. J Hazard mater, 2017, 337: 105-114.
CrossRef Google scholar
[73.]
Hufenus R, Yan Y, Dauner M, Kikutani T. Melt-spun fibers for textile applications. Materials, 2020, 13: 4298.
CrossRef Google scholar
[74.]
Chen M, Wang Z, Li K, Wang X, Wei L. Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv Fiber Mater, 2021, 3: 1-13.
CrossRef Google scholar
[75.]
Daristotle JL, Behrens AM, Sandler AD, Kofinas P. A review of the fundamental principles and applications of solution blow spinning. ACS Appl Mater Interfaces, 2016, 8: 34951-34963.
CrossRef Google scholar
[76.]
Song J, Liu Z, Li Z, Wu H. Continuous production and properties of mutil-level nanofiber air filters by blow spinning. RSC Adv, 2020, 10: 19615-19620.
CrossRef Google scholar
[77.]
Gungor M, Toptas A, Calisir MD, Kilic A. Aerosol filtration performance of nanofibrous mats produced via electrically assisted industrial-scale solution blowing. Polym Engi Sci, 2021, 61: 2557-2566.
CrossRef Google scholar
[78.]
Khalid B, Bai X, Wei H, Huang Y, Wu H, Cui Y. Direct blow-spinning of nanofibers on a window screen for highly efficient PM2.5 removal. Nano Lett, 2017, 17: 1140-1148.
CrossRef Google scholar
[79.]
Li Z, Song J, Long Y, Jia C, Liu Z, Li L, et al. Large-scale blow spinning of heat-resistant nanofibrous air filters. Nano Res, 2020, 13: 861-867.
CrossRef Google scholar
[80.]
Tan NPB, Paclijan SS, Ali HNM, Hallazgo CMJS, Lopez CJF, Ebora YC. Solution blow spinning (SBS) nanofibers for composite air filter masks. ACS Appl Nano Mater, 2019, 2: 2475-2483.
CrossRef Google scholar
[81.]
Liu Y, Jia C, Li P, Zhang H, Jia L, Yu L, et al. Mass production of hierarchically designed engine-intake air filters by multinozzle electroblow spinning. Nano Lett, 2022, 22: 4354-4361.
CrossRef Google scholar
[82.]
Jia C, Liu Y, Li L, Song J, Wang H, Liu Z, et al. A foldable all-ceramic air filter paper with high efficiency and high-temperature resistance. Nano lett, 2020, 20: 4993-5000.
CrossRef Google scholar
[83.]
Liu C, Hsu PC, Lee HW, Ye M, Zheng G, Liu N, et al. Transparent air filter for high-efficiency PM2.5 capture. Nat Commun, 2015, 6:1-9.
[84.]
Lu T, Cui J, Qu Q, Wang Y, Zhang J, Xiong R, et al. Multistructured electrospun nanofibers for air filtration: a review. ACS Appl Mater Interfaces, 2021, 13: 23293-23313.
CrossRef Google scholar
[85.]
Yang X, Pu Y, Zhang Y, Liu X, Li J, Yuan D, et al. Multifunctional composite membrane based on BaTiO3@PU/PSA nanofibers for high-efficiency PM2.5 removal. J Hazard Mater, 2020, 391: 122254.
CrossRef Google scholar
[86.]
Peng Z, Shi J, Xiao X, Hong Y, Li X, Zhang W, et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat Commun, 2022, 13: 7835.
CrossRef Google scholar
[87.]
Liu F, Li M, Shao W, Yue W, Hu B, Weng K, et al. Preparation of a polyurethane electret nanofiber membrane and its air-filtration performance. J Colloid Interf Sci, 2019, 557: 318-327.
CrossRef Google scholar
[88.]
Gao X, Li ZK, Xue J, Qian Y, Zhang LZ, Caro J, et al. Titanium carbide Ti3C2T x (MXene) enhanced PAN nanofiber membrane for air purification. J Mem Sci, 2019, 586: 162-169.
CrossRef Google scholar
[89.]
Li J, Zhang D, Yang T, Yang S, Yang X, Zhu H. Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5. J Mem Sci, 2018, 551: 85-92.
CrossRef Google scholar
[90.]
Bian Y, Niu Z, Wang S, Pan Y, Zhang L, Chen C. Removal of size-dependent submicron particles using metal–organic framework-based nanofiber air filters. ACS Appl Mater Interfaces, 2022, 14: 23570-23576.
CrossRef Google scholar
[91.]
Guo J, Hanif A, Shang J, Deka BJ, Zhi N, An AK. PAA@ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2.5 capture. Chem Eng J, 2021, 405: 126584.
CrossRef Google scholar
[92.]
Zhao X, Li Y, Hua T, Jiang P, Yin X, Yu J, et al. Low-resistance dual-purpose air filter releasing negative ions and effectively capturing PM2.5. ACS Appl Mater Interfaces, 2017, 9: 12054-12063.
CrossRef Google scholar
[93.]
Naragund V, Panda P. Electrospun polyacrylonitrile nanofiber membranes for air filtration application. Int J Environ Sci Technol, 2022, 19: 10233-10244.
CrossRef Google scholar
[94.]
Tang X, Zhao S, Feng S, Zhong Z, Xing W. Exploring the key factors in dusty gas filtration: experimental and modeling studies. Ind Eng Chem Res, 2019, 58: 19633-19641.
CrossRef Google scholar
[95.]
Fadil F, Affandi NDN, Misnon MI, Bonnia NN, Harun AM, Alam MK. Review on electrospun nanofiber-applied products. Polymers, 2021, 13: 2087.
CrossRef Google scholar
[96.]
Sanyal A, Sinha-Ray S. Ultrafine PVDF nanofibers for filtration of air-borne particulate matters: a comprehensive review. Polymers, 1864, 2021:13
[97.]
Zhou Y, Liu Y, Zhang M, Feng Z, Yu DG, Wang K. Electrospun nanofiber membranes for air filtration: a review. Nanomaterials, 2022, 12: 1077.
CrossRef Google scholar
[98.]
Nguyen VH, Nguyen BS, Huang CW, Le TT, Nguyen CC, Le TTN, et al. Photocatalytic NO x abatement: recent advances and emerging trends in the development of photocatalysts. J Clean Prod, 2020, 270: 121912.
CrossRef Google scholar
[99.]
Gholami F, Tomas M, Gholami Z, Vakili M. Technologies for the nitrogen oxides reduction from flue gas: a review. Sci Total Environ, 2020, 714: 136712.
CrossRef Google scholar
[100.]
Ângelo J, Andrade L, Madeira LM, Mendes A. An overview of photocatalysis phenomena applied to NO x abatement. J Environ Manag, 2013, 129: 522-539.
CrossRef Google scholar
[101.]
Usberti N, Jablonska M, Di Blasi M, Forzatti P, Lietti L, Beretta A. Design of a “high-efficiency” NH3-SCR reactor for stationary applications. A kinetic study of NH3 oxidation and NH3-SCR over V-based catalysts. Appl Catal B Environ, 2015, 179: 185-195.
CrossRef Google scholar
[102.]
Chen Y, Liao Y, Chen L, Chen Z, Ma X. Performance of transition metal (Cu, Fe and Co) modified SCR catalysts for simultaneous removal of NO and volatile organic compounds (VOCs) from coal-fired power plant flue gas. Fuel, 2021, 289.
CrossRef Google scholar
[103.]
Liu Y, Zhao J, Lee JM. Conventional and new materials for selective catalytic reduction (SCR) of NOx. ChemCatChem, 2018, 10: 1499-1511.
CrossRef Google scholar
[104.]
Liu S, Wang H, Wei Y, Zhang R, Royer S. Morphology-oriented ZrO2-supported vanadium oxide for the NH3-SCR process: importance of structural and textural properties. ACS Appl Mater Interfaces, 2019, 11: 22240-22254.
CrossRef Google scholar
[105.]
Inomata Y, Hata S, Kiyonaga E, Morita K, Yoshida K, Haruta M, et al. Synthesis of bulk vanadium oxide with a large surface area using organic acids and its low-temperature NH3-SCR activity. Catal Today, 2021, 376: 188-196.
CrossRef Google scholar
[106.]
Xu J, Yu H, Zhang C, Guo F, Xie J. Development of cerium-based catalysts for selective catalytic reduction of nitrogen oxides: a review. New J of Chem, 2019, 43: 3996-4007.
CrossRef Google scholar
[107.]
Cai M, Bian X, Xie F, Wu W, Cen P. Preparation and performance of cerium-based catalysts for selective catalytic reduction of nitrogen oxides: a critical review. Catalysts, 2021, 11: 361.
CrossRef Google scholar
[108.]
Guo RT, Qin B, Wei LG, Yin TY, Zhou J, Pan WG. Recent progress of low-temperature selective catalytic reduction of NO x with NH3 over manganese oxide-based catalysts. Phys Chem Chem Phys, 2022, 24: 6363-6382.
CrossRef Google scholar
[109.]
Shan Y, Du J, Zhang Y, Shan W, Shi X, Yu Y, et al. Selective catalytic reduction of NO x with NH3: opportunities and challenges of Cu-based small-pore zeolites. Natl Sci Rev, 2021, 8: nwab010.
CrossRef Google scholar
[110.]
Phil HH, Reddy MP, Kumar PA, Ju LK, Hyo JS. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NO x at low temperatures. Appl Catal B Environ, 2008, 78: 301-308.
CrossRef Google scholar
[111.]
Lian Z, Liu L, Lin C, Shan W, He H. Hydrothermal aging treatment activates V2O5/TiO2 catalysts for NO x abatement. Environ Sci Technol, 2022, 56: 9744-9750.
CrossRef Google scholar
[112.]
Park JH, Kang HC, Kim PS, Nam IS, Yeo GK, Kil JK, et al. DeNO x performance of Ag/Al2O3 catalyst by n-dodecane: effect of calcination temperature. Appl Catal B Environ, 2011, 101: 275-282.
CrossRef Google scholar
[113.]
Sheng L, Li S, Ma Z, Wang F, He H, Gao Y, et al. Mechanistic insight into the influence of O2 on N2O formation in the selective catalytic reduction of NO with NH3 over Pd/CeO2 catalyst. Catal Sci Technol, 2021, 11: 1709-1716.
CrossRef Google scholar
[114.]
Costa CN, Efstathiou AM. Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. Appl Catal B Environ, 2007, 72: 240-252.
CrossRef Google scholar
[115.]
Chen H, Xia Y, Fang R, Huang H, Gan Y, Liang C, et al. The effects of tungsten and hydrothermal aging in promoting NH3-SCR activity on V2O5/WO3-TiO2 catalysts. Appl Surf Sci, 2018, 459: 639-646.
CrossRef Google scholar
[116.]
Kwon DW, Park KH, Ha HP, Hong SC. The role of molybdenum on the enhanced performance and SO2 resistance of V/Mo-Ti catalysts for NH3-SCR. Appl Surf Sci, 2019, 481: 1167-1177.
CrossRef Google scholar
[117.]
Li P, Xin Y, Li Q, Wang Z, Zhang Z, Zheng L. Ce–Ti amorphous oxides for selective catalytic reduction of NO with NH3: confirmation of Ce–O–Ti active sites. Environ Sci Technol, 2012, 46: 9600-9605.
CrossRef Google scholar
[118.]
Peng Y, Qu R, Zhang X, Li J. The relationship between structure and activity of MoO3–CeO2 catalysts for NO removal: influences of acidity and reducibility. Chem Commun, 2013, 49: 6215-6217.
CrossRef Google scholar
[119.]
Guo RT, Zhen WL, Pan WG, Zhou Y, Hong JN, Xu HJ, et al. Effect of Cu doping on the SCR activity of CeO2 catalyst prepared by citric acid method. J Ind Eng Chem, 2014, 20: 1577-1580.
CrossRef Google scholar
[120.]
Tang X, Hao J, Xu W, Li J. Low temperature selective catalytic reduction of NO x with NH3 over amorphous MnO x catalysts prepared by three methods. Catal Commun, 2007, 8: 329-334.
CrossRef Google scholar
[121.]
Kang M, Park ED, Kim JM, Yie JE. Cu–Mn mixed oxides for low temperature NO reduction with NH3. Catal Today, 2006, 111: 236-241.
CrossRef Google scholar
[122.]
Long RQ, Yang RT, Chang R. Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe–Mn based catalysts. Chem Commun, 2002, 2002: 452-453.
CrossRef Google scholar
[123.]
Tang XF, Li JH, Wei LS, Hao JM. MnO x–SnO2 catalysts synthesized by a redox coprecipitation method for selective catalytic reduction of NO by NH3. Chin J Catal, 2008, 29: 531-536.
CrossRef Google scholar
[124.]
Singoredjo L, Korver R, Kapteijn F, Moulijn J. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl Catal B Environ, 1992, 1: 297-316.
CrossRef Google scholar
[125.]
Wu Z, Jin R, Liu Y, Wang H. Ceria modified MnO x/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal Commun, 2008, 9: 2217-2220.
CrossRef Google scholar
[126.]
Wang D, Zhang L, Li J, Kamasamudram K, Epling WS. NH3-SCR over Cu/SAPO-34–Zeolite acidity and Cu structure changes as a function of Cu loading. Catal Today, 2014, 231: 64-74.
CrossRef Google scholar
[127.]
Zhao H, Yang G, Hill AJ, Luo B-E, Jing G. One-step ion-exchange from Na-SSZ-13 to Cu-SSZ-13 for NH3-SCR by adjusting the pH value of Cu-exchange solution: the effect of H+ ions on activity and hydrothermal stability. Micropor Mesopor Mat, 2021, 324: 111271.
CrossRef Google scholar
[128.]
Peng C, Yan R, Peng H, Mi Y, Liang J, Liu W, et al. One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures. J Hazard Mater, 2020, 385: 121593.
CrossRef Google scholar
[129.]
Sazama P, Wichterlová B, Tábor E, Šťastný P, Sathu NK, Sobalík Z, et al. Tailoring of the structure of Fe-cationic species in Fe-ZSM-5 by distribution of Al atoms in the framework for N2O decomposition and NH3-SCR-NO x. J Catal, 2014, 312: 123-138.
CrossRef Google scholar
[130.]
Liu Q, Bian C, Jin Y, Pang L, Chen Z, Li T. Influence of calcination temperature on the evolution of Fe species over Fe-SSZ-13 catalyst for the NH3-SCR of NO. Catal Today, 2020, 388–389:158-167.
[131.]
Liu J, Wu X, Hou B, Du Y, Liu L, Yang B. NiMn2O4 sphere catalyst for the selective catalytic reduction of NO by NH3: Insight into the enhanced activity via solvothermal method. J Environ Chem Eng, 2021, 9: 105152.
CrossRef Google scholar
[132.]
Gao F, Tang X, Yi H, Zhao S, Wang J, Gu T. Improvement of activity, selectivity and H2O&SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NO x. Appl Surf Sci, 2019, 466: 411-424.
CrossRef Google scholar
[133.]
Xu H, Qu Z, Zong C, Quan F, Mei J, Yan N. Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas. Appl Catal B Environ, 2016, 186: 30-40.
CrossRef Google scholar
[134.]
Shi X, Guo J, Shen T, Fan A, Yuan S, Li J. Enhancement of Ce doped La–Mn oxides for the selective catalytic reduction of NO x with NH3 and SO2 and/or H2O resistance. Chem Eng J, 2021, 421: 129995.
CrossRef Google scholar
[135.]
Kong M, Liu Q, Zhou J, Jiang L, Tian Y, Yang J, et al. Effect of different potassium species on the deactivation of V2O5–WO3/TiO2 SCR catalyst: comparison of K2SO4, KCl and K2O. Chem Eng J, 2018, 348: 637-643.
CrossRef Google scholar
[136.]
Fragoso J, Barreca D, Bigiani L, Gasparotto A, Sada C, Lebedev OI, et al. Enhanced photocatalytic removal of NO x gases by β-Fe2O3/CuO and β-Fe2O3/WO3 nanoheterostructures. Chem Eng J, 2022, 430: 132757.
CrossRef Google scholar
[137.]
Yamamoto A, Teramura K, Tanaka T. Selective catalytic reduction of NO by NH3 over photocatalysts (photo-SCR): mechanistic investigations and developments. Chem Rec, 2016, 16: 2268-2277.
CrossRef Google scholar
[138.]
Zhao Z, Fan J, Liu W, Xue Y, Yin S. In-situ hydrothermal synthesis of Ag3PO4/g-C3N4 composite and their photocatalytic decomposition of NO x. J Alloy Compd, 2017, 695: 2812-2819.
CrossRef Google scholar
[139.]
Yamamoto A, Mizuno Y, Teramura K, et al. Effects of reaction temperature on the photocatalytic activity of photo-SCR of NO with NH3 over a TiO2 photocatalyst. Catal Sci Technol, 2013, 3: 1771-1775.
CrossRef Google scholar
[140.]
Khanal V, Balayeva NO, Günnemann C, Mamiyev Z, Dillert R, Bahnemann DW, et al. Photocatalytic NO x removal using Tantalum oxide nanoparticles: a benign pathway. Appl Catal B Environ, 2021, 291: 119974.
CrossRef Google scholar
[141.]
Wang Z, Chen M, Huang Y, Shi X, Zhang Y, Huang T, et al. Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NO x removal under visible light. Appl Catal B Environ, 2018, 239: 352-361.
CrossRef Google scholar
[142.]
Nikokavoura A, Trapalis C. Graphene and g-C3N4 based photocatalysts for NO x removal: a review. Appl Surf Sci, 2018, 430: 18-52.
CrossRef Google scholar
[143.]
Zhang P, Rao Y, Huang Y, Chen M, Huang T, Ho W, et al. Transformation of amorphous Bi2O3 to crystal Bi2O2CO3 on Bi nanospheres surface for photocatalytic NO x oxidation: Intensified hot-electron transfer and reactive oxygen species generation. Chem Eng J, 2021, 420: 129814.
CrossRef Google scholar
[144.]
Liu G, Xia H, Niu Y, Zhao X, Zhang G, Song L, et al. Fabrication of self-cleaning photocatalytic durable building coating based on WO3–TNs/PDMS and NO degradation performance. Chem Eng J, 2021, 409: 128187.
CrossRef Google scholar
[145.]
Kobayashi M, Suzuki Y, Goto T, Cho SH, Sekino T, Asakura Y, et al. Low-temperature hydrothermal synthesis and characterization of SrTiO3 photocatalysts for NO x degradation. J Ceram Soc Jpn, 2018, 126: 135-138.
CrossRef Google scholar
[146.]
Ohko Y, Nakamura Y, Negishi N, Matsuzawa S, Takeuchi K. Photocatalytic oxidation of nitrogen monoxide using TiO2 thin films under continuous UV light illumination. J Photoch Photobio A, 2009, 205: 28-33.
CrossRef Google scholar
[147.]
Javier F, Davide B, Lorenzo B, Alberto G, Cinzia S, Oleg IL, et al. Enhanced photocatalytic removal of NO x gases by β-Fe2O3/CuO and β-Fe2O3/WO3 nanoheterostructures. Chem Eng J, 2021, 430:132757
[148.]
Poulston S, Twigg MV, Walker AP. The Effect of nitric oxide on the photocatalytic oxidation of small hydrocarbons over titania. Appl Catal B, 2009, 89(3–4): 335-341.
CrossRef Google scholar
[149.]
Bowering N, Walker GS, Harrison PG. Photocatalytic decomposition and reduction reactions of nitric oxide over Degussa P25. Appl Catal B Environ, 2006, 6: 208-216.
CrossRef Google scholar
[150.]
Yamazoe S, Masutani Y, Teramura K, Hitomi Y, Shishido T, Tanaka T. Promotion effect of tungsten oxide on photo-assisted selective catalytic reduction of NO with NH3 over TiO2. Appl Catal B Environ, 2008, 83: 123-130.
CrossRef Google scholar
[151.]
Li X, Shi H, Yan X, Zuo S, Zhang Y, Chen Q, et al. Rational construction of direct Z-scheme doped perovskite/palygorskite nanocatalyst for photo-SCR removal of NO: Insight into the effect of Ce incorporation. J Catal, 2019, 369: 190-200.
CrossRef Google scholar
[152.]
Li X, Zhang H, H, Zuo S, Zhang Y, Yao C. Photo-assisted SCR removal of NO by upconversion CeO2/Pr3+/attapulgite nanocatalyst. Environ Sci Pollut R, 2019, 26: 12842-12850.
CrossRef Google scholar
[153.]
Li X, Yan X, Zuo S, Lu X, Luo S, Li Z, et al. Construction of LaFe1− xMn xO3/attapulgite nanocomposite for photo-SCR of NO x at low temperature. Chem Eng J, 2017, 320: 211-221.
CrossRef Google scholar
[154.]
Takeuchi M, Yamashita H, Matsuoka M, Anpo M, Hirao T, Itoh N, et al. Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst. Catal Lett, 2000, 67: 135-137.
CrossRef Google scholar
[155.]
Anpo M. Approach to photocatalysis at the molecular level design of photocatalysts, detection of intermediate species, and reaction mechanisms. Sol Energ Mat Sol C, 1995, 38: 221-238.
CrossRef Google scholar
[156.]
Hu Y, Higashimoto S, Martra G, Zhang J, Matsuoka M, Coluccia S, et al. Local structures of active sites on Ti-MCM-41 and their photocatalytic reactivity for the decomposition of NO. Catal Lett, 2003, 90: 161-163.
CrossRef Google scholar
[157.]
Li W, Wang J, Gong H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today, 2009, 148: 81-87.
CrossRef Google scholar
[158.]
Song M, Liu X, Zhang Y, Shao M, Lu K, Tan Q, et al. Sources and abatement mechanisms of VOCs in southern China. Atmos Environ, 2019, 201: 28-40.
CrossRef Google scholar
[159.]
Helmig DJ, Bottenheim IE, Galbally A, Lewis MJT, Milton S, Penkett C, Plass-Duelmer S, et al. Volatile organic compounds in the global atmosphere. Eos Trans AGU, 2023, 90: 513-514.
CrossRef Google scholar
[160.]
Pui WK, Yusoff R, Aroua MK. A review on activated carbon adsorption for volatile organic compounds (VOCs). Rev Chem Eng, 2019, 35: 649-668.
CrossRef Google scholar
[161.]
Zhang X, Gao B, Creamer AE, Cao C, Li Y. Adsorption of VOCs onto engineered carbon materials: a review. J Hazard Mater, 2017, 338: 102-123.
CrossRef Google scholar
[162.]
Li X, Zhang L, Yang Z, Wang P, Yan Y, Ran J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep Purif Technol, 2020, 235: 116213.
CrossRef Google scholar
[163.]
Han GP, Huang HL, Guo MX, Li FH, Fan HL, Guo QQ, Zhong CL. Rational design of the double hydrogen-bonds sites in IL@MOF composites for efficient and selective formaldehyde capture. Sep Purif Technol, 2023, 328: 125116.
CrossRef Google scholar
[164.]
Yu Y, Ma Q, Zhang JB, Liu GB. Electrospun SiO2 aerogel/polyacrylonitrile composited nanofibers with enhanced adsorption performance of volatile organic compounds. Appl Surf Sci, 2020, 512: 145697.
CrossRef Google scholar
[165.]
Kayaci F, Uyar T. Electrospun polyester/cyclodextrin nanofibers for entrapment of volatile organic compounds. Polym Eng Sci, 2014, 54: 2970-2978.
CrossRef Google scholar
[166.]
Hong GB, Ruan RT, Chang CT. MCM-41 from spent glasses for volatile organic compounds treatment. Chem Eng J, 2013, 215: 472-478.
CrossRef Google scholar
[167.]
Wu S, Wang Y, Sun C, Zhao T, Zhao J, Wang Z, et al. Novel preparation of binder-free Y/ZSM-5 zeolite composites for VOCs adsorption. Chem Eng J, 2021, 417: 129172.
CrossRef Google scholar
[168.]
Hu Q, Li JJ, Hao ZP, Li LD, Qiao SZ. Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials. Chem Eng J, 2009, 149: 281-288.
CrossRef Google scholar
[169.]
Yin T, Meng X, Wang S, Yao X, Liu N, Shi L. Study on the adsorption of low-concentration VOCs on zeolite composites based on chemisorption of metal-oxides under dry and wet conditions. Sep Purif Technol, 2022, 280: 119634.
CrossRef Google scholar
[170.]
Deng H, Pan T, Zhang Y, Wang L, Wu Q, Ma J, et al. Adsorptive removal of toluene and dichloromethane from humid exhaust on MFI, BEA and FAU zeolites: an experimental and theoretical study. Chem Eng J, 2020, 394: 124986.
CrossRef Google scholar
[171.]
Wang J, Muhammad Y, Gao Z, Shah SJ, Nie S, Kuang L, et al. Implanting polyethylene glycol into MIL-101 (Cr) as hydrophobic barrier for enhancing toluene adsorption under highly humid environment. Chem Eng J, 2021, 404: 126562.
CrossRef Google scholar
[172.]
Vellingiri K, Kumar P, Deep A, Kim KH. Metal–organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure. Chem Eng J, 2017, 307: 1116-1126.
CrossRef Google scholar
[173.]
Zhu Q, Tang X, Feng S, Zhong Z, Yao J, Yao Z. ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control. J Membr Sci, 2019, 581: 252-261.
CrossRef Google scholar
[174.]
Bahri M, Haghighat F, Kazemian H, Rohani S. A comparative study on metal organic frameworks for indoor environment application: Adsorption evaluation. Chem Eng J, 2017, 313: 711-723.
CrossRef Google scholar
[175.]
Zhong L, Haghighat F. Photocatalytic air cleaners and materials technologies–abilities and limitations. Build Environ, 2015, 91: 191-203.
CrossRef Google scholar
[176.]
Mamaghani AH, Haghighat F, Lee CS. Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl Catal B Environ, 2017, 203: 247-269.
CrossRef Google scholar
[177.]
Bui VKH, Nguyen TN, Van Tran V, Hur J, Kim IT, Park D, et al. Photocatalytic materials for indoor air purification systems: an updated mini-review. Environ Technol Innov, 2021, 22: 101471.
CrossRef Google scholar
[178.]
Ren H, Koshy P, Chen W-F, Qi S, Sorrell CC. Photocatalytic materials and technologies for air purification. J Hazard Mater, 2017, 325: 340-366.
CrossRef Google scholar
[179.]
Dong G, Wang X, Chen Z, Lu Z. Enhanced photocatalytic activity of vacuum-activated tio2 induced by oxygen vacancies. Photochem Photobiol, 2018, 94: 472-483.
CrossRef Google scholar
[180.]
Zhang KL, Liu CM, Huang FQ, Zheng C, Wang WD. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B Environ, 2006, 68: 125-129.
CrossRef Google scholar
[181.]
Zhao GQ, Hu J, Zou J, Long X, Jiao FP. Modulation of BiOBr-based photocatalysts for energy and environmental application: a critical review. J Environ Chem Eng, 2022, 10: 107226.
CrossRef Google scholar
[182.]
Kamal MS, Razzak SA, Hossain MM. Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos Environ, 2016, 140: 117-134.
CrossRef Google scholar
[183.]
Li X, Huang Y, Liu B. Catalyst: single-atom catalysis: directing the way toward the nature of catalysis. Chem, 2019, 5: 2733-2735.
CrossRef Google scholar
[184.]
Salaev M, Salaeva A, Kharlamova T, Mamontov G. Pt–CeO2-based composites in environmental catalysis: a review. Appl Catal B Environ, 2021, 295: 120286.
CrossRef Google scholar
[185.]
Ye J, Yu Y, Fan J, Cheng B, Yu J, Ho W. Room-temperature formaldehyde catalytic decomposition. Environ Sci: Nano, 2020, 7:3655-3709.
[186.]
Yiheng L, Tao D, Pingli H, Jian J, Haibao H. Efficient HCHO oxidation at room temperature via maximizing catalytic sites in 2D coralloid δ-MnO2@GO. Appl Catal B Environ, 2023, 341:123322
[187.]
Morales-Torres S, Pérez-Cadenas A, Kapteijn F, Carrasco-Marín F, Maldonado-Hódar F, Moulijn J. Palladium and platinum catalysts supported on carbon nanofiber coated monoliths for low-temperature combustion of BTX. Appl Catal B Environ, 2009, 89: 411-419.
CrossRef Google scholar
[188.]
Xu F, Le Y, Cheng B, Jiang C. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature. Appl Surf Sci, 2017, 426: 333-341.
CrossRef Google scholar
[189.]
He F-G, Du B, Sharma G, Stadler FJ. Highly efficient polydopamine-coated poly(methyl methacrylate) nanofiber supported platinum–nickel bimetallic catalyst for formaldehyde oxidation at room temperature. Polymers, 2019, 11: 674.
CrossRef Google scholar
[190.]
Kang S, Hwang J. Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment. Chem Eng J, 2020, 379: 122315.
CrossRef Google scholar
[191.]
Zhu X, Chen J, Yu X, Zhu X, Gao X, Cen K. Controllable synthesis of novel hierarchical V2O5/TiO2 nanofibers with improved acetone oxidation performance. RSC Adv, 2015, 5: 30416-30424.
CrossRef Google scholar
[192.]
Dong F, Han W, Han W, Tang Z. Assembling core-shell SiO2@NiaCobO x nanotube decorated by hierarchical NiCo-Phyllisilicate ultrathin nanosheets for highly efficient catalytic combustion of VOCs. Appl Catal B Environ, 2022, 315: 121524.
CrossRef Google scholar
[193.]
Yan D, Mo S, Sun Y, Ren Q, Feng Z, Chen P, et al. Morphology-activity correlation of electrospun CeO2 for toluene catalytic combustion. Chemosphere, 2020, 247: 125860.
CrossRef Google scholar
[194.]
Feng X, Luo F, Chen Y, Lin D, Luo Y, Xiao L, et al. Boosting total oxidation of propane over CeO2@Co3O4 nanofiber catalysts prepared by multifluidic coaxial electrospinning with continuous grain boundary and fast lattice oxygen mobility. J Hazard Mater, 2021, 406: 124695.
CrossRef Google scholar
[195.]
Zhou S, Wang C, Fang H, Li D, Du Y, Qi X. Communication—Hollow MnO x@Nanoparticles Electrospun Fibers with High Porosity for Formaldehyde Removal at Room Temperature. J Electrochem Soc, 2022, 169: 027518.
CrossRef Google scholar
[196.]
Cui F, Han W, Si Y, Chen W, Zhang M, Kim HY, et al. In situ synthesis of MnO2@ SiO2–TiO2 nanofibrous membranes for room temperature degradation of formaldehyde. Compos Commun, 2019, 16: 61-66.
CrossRef Google scholar
[197.]
Su J, Cheng C, Guo Y, Xu H, Ke Q. OMS-2-based catalysts with controllable hierarchical morphologies for highly efficient catalytic oxidation of formaldehyde. J Hazard Mater, 2019, 380: 120890.
CrossRef Google scholar
[198.]
Martínez-Ahumada E, López-Olvera A, Jancik V, Sánchez-Bautista JE, González-Zamora E, Martis V, et al. MOF Materials for the Capture of Highly Toxic H2S and SO2. Organometallics, 2020, 39: 883-915.
CrossRef Google scholar
[199.]
Hikita H, Asai S, Tsuji T. Absorption of sulfur dioxide into aqueous sodium hydroxide and sodium sulfite solutions. AIChE J, 1977, 23: 538-544.
CrossRef Google scholar
[200.]
Lee K, Mohamed A, Bhatia S, Chu K. Removal of sulfur dioxide by fly ash/CaO/CaSO4 sorbents. Chem Eng J, 2005, 114: 171-177.
CrossRef Google scholar
[201.]
Srivastava RK, Jozewicz W, Singer C. SO2 scrubbing technologies: a review. Environ Prog, 2001, 20: 219-228.
CrossRef Google scholar
[202.]
Ma W, Jiang Q, Yu P, Yang L, Mao L. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal Chem, 2013, 85: 7550-7557.
CrossRef Google scholar
[203.]
Brandt P, Nuhnen A, Öztürk S, Kurt G, Liang J, Janiak C. Comparative evaluation of different MOF and non-MOF porous materials for SO2 adsorption and separation showing the importance of small pore diameters for low-pressure uptake. Adv Sustain Syst, 2021, 5: 2000285.
CrossRef Google scholar
[204.]
Martínez-Ahumada E, Díaz-Ramírez ML, Lara-García HA, Williams DR, Martis V, Jancik V, et al. High and reversible SO2 capture by a chemically stable Cr(iii)-based MOF. J Mater Chem A, 2020, 8: 11515-11520.
CrossRef Google scholar
[205.]
Song XD, Wang S, Hao C, Qiu JS. Investigation of SO2 gas adsorption in metal–organic frameworks by molecular simulation. Inorg Chem Commun, 2014, 46: 277-281.
CrossRef Google scholar
[206.]
Tan K, Canepa P, Gong Q, Liu J, Johnson DH, Dyevoich A, et al. Mechanism of preferential adsorption of SO2 into two microporous paddle wheel frameworks M (bdc)(ted) 0.5. Chem Mater, 2013, 25: 4653-4662.
CrossRef Google scholar
[207.]
Mounfield WP III Han C, Pang SH, Tumuluri U, Jiao Y, Bhattacharyya S, et al. Synergistic effects of water and SO2 on degradation of MIL-125 in the presence of acid gases. J Phys Chem C, 2016, 120: 27230-27240.
CrossRef Google scholar
[208.]
Brandt P, Nuhnen A, Lange M, Mollmer J, Weingart O, Janiak C. Metal–organic frameworks with potential application for SO2 separation and flue gas desulfurization. ACS Appl Mater Interfaces, 2019, 11: 17350-17358.
CrossRef Google scholar
[209.]
Cui X, Yang Q, Yang L, Krishna R, Zhang Z, Bao Z, et al. Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials. Adv Mater, 2017, 29: 1606929.
CrossRef Google scholar
[210.]
Carter JH, Han X, Moreau FY, Da Silva I, Nevin A, Godfrey HG, et al. Exceptional adsorption and binding of sulfur dioxide in a robust zirconium-based metal–organic framework. J Am Chem Soc, 2018, 140: 15564-15567.
CrossRef Google scholar
[211.]
Smith GL, Eyley JE, Han X, Zhang X, Li J, Jacques NM, et al. Reversible coordinative binding and separation of sulfur dioxide in a robust metal–organic framework with open copper sites. Nat Mater, 2019, 18: 1358-1365.
CrossRef Google scholar
[212.]
Padial NM, Quartapelle Procopio E, Montoro C, López E, Oltra JE, Colombo V, et al. Highly hydrophobic isoreticular porous metal–organic frameworks for the capture of harmful volatile organic compounds. Angew Chem Int Edit, 2013, 52: 8290-8294.
CrossRef Google scholar
[213.]
Yang S, Sun J, Ramirez-Cuesta AJ, Callear SK, David WI, Anderson DP, et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat Chem, 2012, 4: 887-894.
CrossRef Google scholar
[214.]
Yang S, Liu L, Sun J, Thomas KM, Davies AJ, George MW, et al. Irreversible network transformation in a dynamic porous host catalyzed by sulfur dioxide. J Am Chem Soc, 2013, 135: 4954-4957.
CrossRef Google scholar
[215.]
Tchalala M, Bhatt P, Chappanda K, Tavares S, Adil K, Belmabkhout Y, et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nat Commun, 2019, 10: 1-10.
CrossRef Google scholar
[216.]
Liu M, Guo L, Jin S, Tan B. Covalent triazine frameworks: synthesis and applications. J Mate Chem A, 2019, 7: 5153-5172.
CrossRef Google scholar
[217.]
Kirschhock CEA, Sultana A, Godard E, et al. Adsorption chemistry of sulfur dioxide in hydrated Na–Y zeolite. Angew Chem Int Edit, 2004, 43: 3722-3724.
CrossRef Google scholar
[218.]
Pan R, Tang Y, Guo Y, Shang J, Zhou L, Dong W, et al. HKUST-1 and its graphene oxide composites: finding an efficient adsorbent for SO2 capture. Micropor Mesopor Mat, 2021, 323: 111197.
CrossRef Google scholar
[219.]
Islamoglu T, Chen Z, Wasson MC, Buru CT, Kirlikovali KO, Afrin U, et al. Metal–organic frameworks against toxic chemicals. Chem Rev, 2020, 120: 8130-8160.
CrossRef Google scholar
[220.]
Yu K, Kiesling K, Schmidt J. Trace flue gas contaminants poison coordinatively unsaturated metal–organic frameworks: implications for CO2 adsorption and separation. J Phys Chem C, 2012, 116: 20480-20488.
CrossRef Google scholar
[221.]
Savage M, Cheng Y, Easun TL, Eyley JE, Argent SP, Warren MR, et al. Selective adsorption of sulfur dioxide in a robust metal–organic framework material. Adv Mater, 2016, 28: 8705-8711.
CrossRef Google scholar
[222.]
Tellier R. Review of aerosol transmission of influenza A virus. Emerg Infect Dis, 2006, 12: 1657.
CrossRef Google scholar
[223.]
Prather KA, Marr LC, Schooley RT, McDiarmid MA, Wilson ME, Milton DK. Airborne transmission of SARS-CoV-2. Science, 2020, 370: 303-304.
CrossRef Google scholar
[224.]
Zhang R, Li Y, Zhang AL, Wang Y, Molina MJ. Identifying airborne transmission as the dominant route for the spread of COVID-19. PNAS, 2020, 117: 14857-14863.
CrossRef Google scholar
[225.]
Song JY, Kim S, Park J, Park SM. Highly Efficient, Dual-functional self-assembled electrospun nanofiber filters for simultaneous pm removal and on-site eye-readable formaldehyde sensing. Adv Fiber Mater, 2023, 5: 1088-1103.
CrossRef Google scholar
[226.]
Chan HY, Fang KJ, Li TT, Zhang LY, Zheng QM, Liang YY. Green preparation of water-stable coptidis-dyeing composite nanofiber filters with ultraviolet shielding and antibacterial activity and biodegradability. Sep Purif Technol, 2024, 336: 126289.
CrossRef Google scholar
[227.]
Deng W, Sun Y, Yao X, Subramanian K, Ling C, Wang H, et al. Masks for COVID-19. Adv Sci, 2021, 9: 2102189.
CrossRef Google scholar
[228.]
Peer P, Janalikova M, Sedlarikova J, Pleva P, Filip P, Zelenkova J, et al. Antibacterial filtration membranes based on PVDF-co-HFP nanofibers with the addition of medium-chain 1-monoacylglycerols. ACS Appl Mater Interfaces, 2021, 13: 41021-41033.
CrossRef Google scholar
[229.]
Deng Z, Zhu H, Peng B, Chen H, Sun Y, Gang X, et al. Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl Mater Interfaces, 2012, 4: 5625-5632.
CrossRef Google scholar
[230.]
Liu J, Sonshine DA, Shervani S, Hurt RH. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano, 2010, 4: 6903-6913.
CrossRef Google scholar
[231.]
Zhao Y, Zhang M, Wang Z. Underwater superoleophobic membrane with enhanced oil–water separation, antimicrobial, and antifouling activities. Adv Mater Interfaces, 2016, 3(1): 500664
[232.]
Baram-Pinto D, Shukla S, Gedanken A, Sarid R. Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small, 2010, 6: 1044-1050.
CrossRef Google scholar
[233.]
Kumar S, Karmacharya M, Joshi SR, Gulenko O, Park J, Kim GH, et al. Photoactive antiviral face mask with self-sterilization and reusability. Nano Lett, 2020, 21: 337-343.
CrossRef Google scholar
[234.]
Tavakoli A, Hashemzadeh MS. Inhibition of herpes simplex virus type 1 by copper oxide nanoparticles. J Virol Methods, 2020, 275: 113688.
CrossRef Google scholar
[235.]
Yosef O, Popovits Y, Malik A, Ofek-Lalzer M, Mass T, Sher D. A tentacle for every occasion: comparing the hunting tentacles and sweeper tentacles, used for territorial competition, in the coral Galaxea fascicularis. BMC Genomics, 2020, 21: 1-16.
CrossRef Google scholar
[236.]
Xie Y, Qu X, Li J, Li D, Wei W, Hui D, et al. Ultrafast physical bacterial inactivation and photocatalytic self-cleaning of ZnO nanoarrays for rapid and sustainable bactericidal applications. Sci Total Environ, 2020, 738: 139714.
CrossRef Google scholar
[237.]
Zhong Z, Xu Z, Sheng T, Yao J, Xing W, Wang Y. Unusual air filters with ultrahigh efficiency and antibacterial functionality enabled by ZnO nanorods. ACS Appl Mater Interfaces, 2015, 7: 21538-21544.
CrossRef Google scholar
[238.]
Akhtar S, Shahzad K, Mushtaq S, Ali I, Rafe MH, Fazal-ul-Karim SM. Antibacterial and antiviral potential of colloidal titanium dioxide (TiO2) nanoparticles suitable for biological applications. Mater Res Express, 2019, 6: 105409.
CrossRef Google scholar
[239.]
Makvandi P, Jamaledin R, Jabbari M, Nikfarjam N, Borzacchiello A. Antibacterial quaternary ammonium compounds in dental materials: a systematic review. Dent Mater, 2018, 34: 851-867.
CrossRef Google scholar
[240.]
Demir B, Cerkez I, Worley S, Broughton R, Huang TS. N-halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria. ACS Appl Mater Interfaces, 2015, 7: 1752-1757.
CrossRef Google scholar
[241.]
Cervantes MYG, Han L, Kim J, Chitara B, Wymer N, Yan F. N-halamine-decorated electrospun polyacrylonitrile nanofibrous membranes: characterization and antimicrobial properties. React Funct Polym, 2021, 168: 105058.
CrossRef Google scholar
[242.]
Cao Z, Sun Y. Polymeric N-halamine latex emulsions for use in antimicrobial paints. ACS Appl Mater Interfaces, 2009, 1: 494-504.
CrossRef Google scholar
[243.]
Helander I, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol, 2001, 71: 235-244.
CrossRef Google scholar
[244.]
Lee J, Bae J, Youn D-Y, Ahn J, Hwang WT, Bae H, et al. Violacein-embedded nanofiber filters with antiviral and antibacterial activities. Chem Eng J, 2022, 444: 136460.
CrossRef Google scholar
[245.]
Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J, 2013, 228: 596-613.
CrossRef Google scholar
[246.]
Chandran Rema R, Salim A, Babu R, Pal S, Biswas R, Sathy NB, et al. Nanofibrous facemasks with curcumin for improved bacterial/particulate filtration and biocidal activity. ACS Appl Polym Mater, 2022, 4: 4839-4849.
CrossRef Google scholar
[247.]
Akrami-Hasan-Kohal M, Tayebi L, Ghorbani M. Curcumin-loaded naturally-based nanofibers as active wound dressing mats: morphology, drug release, cell proliferation, and cell adhesion studies. New J Chem, 2020, 44: 10343-10351.
CrossRef Google scholar
[248.]
Fang Q, Zhu M, Yu S, Sui G, Yang X. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials. Mater Sci Eng B, 2016, 214: 1-10.
CrossRef Google scholar
[249.]
Liu X, Souzandeh H, Zheng Y, Xie Y, Zhong WH, Wang C. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Compos Sci Technol, 2017, 138: 124-133.
CrossRef Google scholar
[250.]
Seidi F, Deng C, Zhong Y, Liu Y, Huang Y, Li C, et al. Functionalized masks: powerful materials against COVID-19 and future pandemics. Small, 2021, 17: 2102453.
CrossRef Google scholar
[251.]
Chowdhury MA, Shuvho MBA, Shahid MA, Haque AM, Kashem MA, Lam SS, et al. Prospect of biobased antiviral face mask to limit the coronavirus outbreak. Environ Res, 2021, 192: 110294.
CrossRef Google scholar
[252.]
Chong ES, Hwang GB, Nho CW, Kwon BM, Lee JE, Seo S, et al. Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles. Sci Total Environ, 2013, 444: 110-114.
CrossRef Google scholar
[253.]
Choi J, Yang BJ, Bae GN, Jung JH. Herbal extract incorporated nanofiber fabricated by an electrospinning technique and its application to antimicrobial air filtration. ACS Appl Mater Interfaces, 2015, 7: 25313-25320.
CrossRef Google scholar
[254.]
Son BC, Park CH, Kim CS. Fabrication of antimicrobial nanofiber air filter using activated carbon and cinnamon essential oil. J Nanosci Nanotechno, 2020, 20: 4376-4380.
CrossRef Google scholar
[255.]
Lou MM, Zhu B, Muhammad I, Li B, Xie GL, Wang YL, et al. Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderia seminalis. Carbohyd Res, 2011, 346: 1294-1301.
CrossRef Google scholar
[256.]
Huang L, Xu S, Wang Z, Xue K, Su J, Song Y, et al. Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask. ACS Nano, 2020, 14: 12045-12053.
CrossRef Google scholar
[257.]
Huang L, Gu M, Wang Z, Tang TW, Zhu Z, Yuan Y, et al. Highly efficient and rapid inactivation of coronavirus on non-metal hydrophobic laser-induced graphene in mild conditions. Adv Funct Mater, 2021, 31: 2101195.
CrossRef Google scholar
[258.]
Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev, 2010, 110: 132-145.
CrossRef Google scholar
[259.]
Russier J, Treossi E, Scarsi A, Perrozzi F, Dumortier H, Ottaviano L, et al. Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells. Nanoscale, 2013, 5: 11234-11247.
CrossRef Google scholar
[260.]
Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 2010, 4: 5731-5736.
CrossRef Google scholar
[261.]
Kang S, Pinault M, Pfefferle LD, Elimelech M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007, 23: 8670-8673.
CrossRef Google scholar
[262.]
Kassem A, Ayoub GM, Malaeb L. Antibacterial activity of chitosan nano-composites and carbon nanotubes: a review. Sci Total Environ, 2019, 668: 566-576.
CrossRef Google scholar
[263.]
Park JH, Yoon KY, Na H, Kim YS, Hwang J, Kim J, et al. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy. Sci Total Environ, 2011, 409: 4132-4138.
CrossRef Google scholar
[264.]
Li P, Li J, Feng X, Li J, Hao Y, Zhang J, et al. Metal–organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat Commun, 2019, 10:1-10.
[265.]
Taheri M, Ashok D, Sen T, Enge TG, Verma NK, Tricoli A, et al. Stability of ZIF-8 nanopowders in bacterial culture media and its implication for antibacterial properties. Chem Eng J, 2021, 413: 127511.
CrossRef Google scholar
[266.]
Lu X, Ye J, Zhang D, Xie R, Bogale RF, Sun Y, et al. Silver carboxylate metal–organic frameworks with highly antibacterial activity and biocompatibility. J Inorg Biochem, 2014, 138: 114-121.
CrossRef Google scholar
[267.]
Rodríguez HS, Hinestroza JP, Ochoa-Puentes C, Sierra CA, Soto CY. Antibacterial activity against Escherichia coli of Cu-BTC (MOF-199) metal–organic framework immobilized onto cellulosic fibers. J Appl Polym Sci, 2014, 131: 40815.
CrossRef Google scholar
[268.]
Ouyang B, Ouyang P, Shi M, Maimaiti T, Li Q, Lan S, et al. Low toxicity of metal–organic framework MOF-199 to bacteria Escherichia coli and Staphylococcus aureus. J Hazard Mater Adv, 2021, 1: 100002.
CrossRef Google scholar
[269.]
Tamames-Tabar C, Imbuluzqueta E, Guillou N, Serre C, Miller S, Elkaïm E, et al. A Zn azelate MOF: combining antibacterial effect. CrystEngComm, 2015, 17: 456-462.
CrossRef Google scholar
[270.]
Aguado S, Quirós J, Canivet J, Farrusseng D, Boltes K, Rosal R. Antimicrobial activity of cobalt imidazolate metal–organic frameworks. Chemosphere, 2014, 113: 188-192.
CrossRef Google scholar
[271.]
Zhuang W, Yuan D, Li JR, Luo Z, Zhou HC, Bashir S, et al. Highly potent bactericidal activity of porous metal–organic frameworks. Adv Healthc Mater, 2012, 1: 225-238.
CrossRef Google scholar
[272.]
Alavijeh RK, Beheshti S, Akhbari K, Morsali A. Investigation of reasons for metal–organic framework’s antibacterial activities. Polyhedron, 2018, 156: 257-278.
CrossRef Google scholar
[273.]
Yin L, Hu M, Li D, Chen J, Yuan K, Liu Y, et al. Multifunctional ZIF-67@SiO2 membrane for high efficiency removal of particulate matter and toxic gases. Ind Eng Chem Res, 2020, 59: 17876-17884.
CrossRef Google scholar
[274.]
Hu M, Yin L, Low N, Ji D, Liu Y, Yao J, et al. Zeolitic-imidazolate-framework filled hierarchical porous nanofiber membrane for air cleaning. J Membr Sci, 2020, 594: 117467.
CrossRef Google scholar
[275.]
Topuz F, Abdulhamid MA, Hardian R, Holtzl T, Szekely G. Nanofibrous membranes comprising intrinsically microporous polyimides with embedded metal–organic frameworks for capturing volatile organic compounds. J Hazard Mater, 2022, 424: 127347.
CrossRef Google scholar
[276.]
Sharma A, Kumar SR, Katiyar V, Gopinath P. Graphene oxide/silver nanoparticle (GO/AgNP) impregnated polyacrylonitrile nanofibers for potential application in air filtration. Nano Struct Nano-Objects, 2021, 26: 100708.
CrossRef Google scholar
[277.]
El-Aswar EI, Ramadan H, Elkik H, Taha AG. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. J Environ Manage, 2022, 301: 113908.
CrossRef Google scholar
[278.]
Pereao O, Bode-Aluko C, Laatikainen K, Nechaev A, Petrik L. Morphology, modification and characterisation of electrospun polymer nanofiber adsorbent material used in metal ion removal. J Polym Environ, 2019, 27: 1843-1860.
CrossRef Google scholar
[279.]
Abd Halim NS, Wirzal MDH, Hizam SM, Bilad MR, Nordin NAHM, Sambudi NS, et al. Recent development on electrospun nanofiber membrane for produced water treatment: a review. J Environ Chem Eng, 2021, 9: 104613.
CrossRef Google scholar
[280.]
Kang Y, Chen J, Feng S, Zhou H, Zhou F, Low Z-X, et al. Efficient removal of high-temperature particulate matters via a heat resistant and flame retardant thermally-oxidized PAN/PVP/SnO2 nanofiber membrane. J Membr Sci, 2022, 662: 120985.
CrossRef Google scholar
[281.]
Zhao G, Zhao H, Zhuang X, Shi L, Cheng B, Xu X, et al. Nanofiber hybrid membranes: progress and application in proton exchange membranes. J Mater Chem A, 2021, 9: 3729-3266.
CrossRef Google scholar
[282.]
Zheng W, Li Z, Sun T, Ruan X, Dai Y, Li X, et al. PAN electrospun nanofiber skeleton induced MOFs continuous distribution in MMMs to boost CO2 capture. J Membr Sci, 2022, 650: 120330.
CrossRef Google scholar
[283.]
Jiang C, Ling Z, Xu Y, Bao J, Feng L, Cheng H, et al. Long-term, synergistic and high-efficient antibacterial polyacrylonitrile nanofibrous membrane prepared by “one-pot” electrospinning process. J Colloid Interf Sci, 2022, 609: 718-733.
CrossRef Google scholar
[284.]
Yao J, Dong D, Li D, He L, Xu G, Wang H. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem Commun, 2011, 47: 2559-2561.
CrossRef Google scholar
[285.]
Shamsaei E, Lin X, Low Z-X, Abbasi Z, Hu Y, Liu JZ, et al. Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate. A ACS Appl Mater Interfaces, 2016, 8: 6236-6244.
CrossRef Google scholar
[286.]
Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM. Directed self-assembly of nanoparticles. ACS Nano, 2010, 4: 3591-3605.
CrossRef Google scholar
[287.]
George SM. Atomic layer deposition: an overview. Chem Rev, 2010, 110: 111-131.
CrossRef Google scholar
[288.]
Leskelä M, Ritala M. Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films, 2002, 409: 138-146.
CrossRef Google scholar
[289.]
Yang H-C, Waldman RZ, Chen Z, Darling SB. Atomic layer deposition for membrane interface engineering. Nanoscale, 2018, 10: 20505-20513.
CrossRef Google scholar
[290.]
Rihova M, Yurkevich O, Motola M, Hromadko L, Spotz Z, Zazpe R, et al. ALD coating of centrifugally spun polymeric fibers and postannealing: case study for nanotubular TiO2 photocatalyst. Nanoscale Adv, 2021, 3: 4589-4596.
CrossRef Google scholar
[291.]
Li L, Zhang F, Zhong Z, Zhu M, Xing W. Novel synthesis of a high performance Pt/ZnO/SiC filter for the oxidation of toluene. Ind Eng Chem Res, 2017, 56: 13857-13865.
CrossRef Google scholar
[292.]
Dwyer DB, Lee DT, Boyer S, Bernier WE, Parsons GN, Jones WE Jr. Toxic organophosphate hydrolysis using nanofiber-templated UiO-66-NH2 metal–organic framework polycrystalline cylinders. ACS Appl Mater Interfaces, 2018, 10: 25794-25803.
CrossRef Google scholar
[293.]
Khalily MA, Eren H, Akbayrak S, Susapto HH, Biyikli N, Özkar S, et al. Facile synthesis of three-dimensional Pt-TiO2 nano-networks: a highly active catalyst for the hydrolytic dehydrogenation of ammonia–borane. Angew Chem Int Edit, 2016, 128: 12445-12449.
CrossRef Google scholar
[294.]
Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology. Prog Cryst Growth Ch, 2007, 53: 117-166.
CrossRef Google scholar
[295.]
Kumar S, Jain S, Nehra M, Dilbaghi N, Marrazza G, Kim KH. Green synthesis of metal–organic frameworks: a state-of-the-art review of potential environmental and medical applications. Coordin Chem Rev, 2020, 420: 213407.
CrossRef Google scholar
[296.]
Lee H, Jeon S. Polyacrylonitrile nanofiber membranes modified with Ni-based conductive metal organic frameworks for air filtration and respiration monitoring. ACS Appl Nano Mater, 2020, 3: 8192-8198.
CrossRef Google scholar
[297.]
Khaleque A, Alam MM, Hoque M, Mondal S, Haider JB, Xu B, et al. Zeolite synthesis from low-cost materials and environmental applications: a review. Environ Adv, 2020, 2: 100019.
CrossRef Google scholar
[298.]
Sharma R, Sarkar A, Jha R, Kumar Sharma A, Sharma D. Sol–gel-mediated synthesis of TiO2 nanocrystals: structural, optical, and electrochemical properties. Int J Appl Ceram Technol, 2020, 17: 1400-1409.
CrossRef Google scholar
[299.]
Matysiak W, Tański T. Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with sol–gel and electrospinning methods. Appl Surf Sci, 2019, 489: 34-43.
CrossRef Google scholar
[300.]
Zhang H, Zhao B, Wang H, Wang J, Teng Y, Sun Y, et al. Water-/oil-repellent polyacrylonitrile nanofiber air filter modified with silica nanoparticles and fluorine compounds. ACS Appl Nano Mater, 2022, 5: 8131-8141.
CrossRef Google scholar
[301.]
Won JH, Kim MK, Oh H-S, Jeong HM. Scalable production of visible light photocatalysts with extended nanojunctions of WO3/g–C3N4 using zeta potential and phase control in sol–gel process. Appl Surf Sci, 2023, 612: 155838.
CrossRef Google scholar
[302.]
Lee W-Y, Kim DW, Kim HJ, Kim K, Lee SH, Bae JH, et al. Environmentally and electrically stable sol–gel-deposited SnO2 thin-film transistors with controlled passivation layer diffusion penetration depth that minimizes mobility degradation. ACS Appl Mater Interfaces, 2022, 14: 10558-10565.
CrossRef Google scholar
[303.]
Perveen R, Shujaat S, Qureshi Z, Nawaz S, Khan M, Iqbal M. Green versus sol–gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens. J Mater Res Technol, 2020, 9: 7817-7827.
CrossRef Google scholar
[304.]
Calabrese L, Proverbio E. A brief overview on the anticorrosion performances of sol–gel zeolite coatings. Coatings, 2019, 9: 409.
CrossRef Google scholar
[305.]
Chen J, Wang B, Yuan K, Kang Y, Feng S, Han F, et al. One-pot in situ synthesis of Cu-SAPO-34/SiC catalytic membrane with enhanced binding strength and chemical resistance for combined removal of NO and dust. Chem Eng J, 2021, 420: 130425.
CrossRef Google scholar
[306.]
Zhu H, Song L, Li K, Wu R, Qiu W, He HJ. Low-temperature SCR catalyst development and industrial applications in China. Catalysts, 2022, 12: 341.
CrossRef Google scholar
[307.]
Feng S, Zhou M, Han F, Zhong Z, Xing W. A bifunctional MnO x@ PTFE catalytic membrane for efficient low temperature NO x-SCR and dust removal. Chin J Chem Eng, 2020, 28: 1260-1267.
CrossRef Google scholar
[308.]
Zhou H, Zhong H, Zeng Y, Kang Y, Chen B, Ma S, et al. A strategy for constructing highly efficient Co3O4-C@SiO2 nanofibers catalytic membrane for NH3-SCR of NO and dust filtration. Sep Purif Technol, 2022, 292: 120997.
CrossRef Google scholar
[309.]
Luo R, Zeng Y, Ju S, Feng S, Zhang F, Zhong Z, et al. Flowerlike FeO x–MnO x amorphous oxides anchored on PTFE/PPS membrane for efficient dust filtration and low-temperature NO reduction. Ind Eng Chem Res, 2022, 61: 5816-5824.
CrossRef Google scholar
[310.]
Bian Y, Wang R, Wang S, Yao C, Ren W, Chen C, et al. Metal–organic framework-based nanofiber filters for effective indoor air quality control. J Mater Chem A, 2018, 6: 15807-15814.
CrossRef Google scholar
[311.]
Kadam V, Truong YB, Schutz J, Kyratzis IL, Padhye R, Wang L. Gelatin/β–cyclodextrin bio–nanofibers as respiratory filter media for filtration of aerosols and volatile organic compounds at low air resistance. J Hazard Mater, 2021, 403: 123841.
CrossRef Google scholar
[312.]
Su J, Yang G, Cheng C, Huang C, Xu H, Ke Q. Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation. J Colloid Interf Sci, 2017, 507: 386-396.
CrossRef Google scholar
[313.]
Cui Y, Jiang Z, Xu C, Zhu M, Li W, Wang C. Preparation, filtration, and photocatalytic properties of PAN@g-C3N4 fibrous membranes by electrospinning. RSC Adv, 2021, 11: 19579-19586.
CrossRef Google scholar
[314.]
Gupta V, Jain R, Mittal A, Mathur M, Sikarwar S. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interf Sci, 2007, 309: 464-469.
CrossRef Google scholar
[315.]
Liu X, Ma R, Zhuang L, Hu B, Chen J, Liu X, et al. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit Rev Env Sci Tec, 2021, 51: 751-790.
CrossRef Google scholar
[316.]
Wang M, Zhang L, Huang W, Xiu T, Zhuang C, Shi J. The catalytic oxidation removal of low-concentration HCHO at high space velocity by partially crystallized mesoporous MnO x. Chem Eng J, 2017, 320: 667-676.
CrossRef Google scholar
[317.]
Zheng JY, Zhao WK, Wang X, Zheng Z, Zhang Y, Wang H, et al. Electric-enhanced hydrothermal synthesis of manganese dioxide for the synergistic catalytic of indoor low-concentration formaldehyde at room temperature. Chem Eng J, 2020, 401: 125790.
CrossRef Google scholar
[318.]
Zhu S, Zheng J, Xin S, Nie L. Preparation of flexible Pt/TiO2/γ-Al2O3 nanofiber paper for room-temperature HCHO oxidation and particulate filtration. Chem Eng J, 2022, 427: 130951.
CrossRef Google scholar
[319.]
Zhou H, Zeng Y, Low Z, Zhang F, Zhong Z, Xing W. Core-dual-shell structure MnO2@Co–C@SiO2 nanofiber membrane for efficient indoor air cleaning. J Membr Sci, 2023, 677: 121644.
CrossRef Google scholar
[320.]
Hu M, Yin L, Zhou H, Wu L, Yuan K, Pan B, et al. Manganese dioxide-filled hierarchical porous nanofiber membrane for indoor air cleaning at room temperature. J Membr Sci, 2020, 605: 118094.
CrossRef Google scholar
[321.]
Hao Z, Wu J. Self-assembled zeolitic imidazolate framework/polyimide nanofibers for efficient air pollution control. ACS Appl Nano Mater, 2022, 5: 2343-2349.
CrossRef Google scholar
[322.]
Feng S, Li X, Zhao S, Hu Y, Zhong Z, Xing W, et al. Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO2 dynamic adsorption. Environ Sci Nano, 2018, 5: 3023-3031.
CrossRef Google scholar
[323.]
Wang X, Xu W, Yan X, Chen Y, Guo M, Zhou G, et al. MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively. Nanoscale, 2019, 11: 17782-17790.
CrossRef Google scholar
[324.]
Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang B. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J Am Chem Soc, 2016, 138: 5785-5788.
CrossRef Google scholar
[325.]
Wang L, Kang Y, Xing CY, Guo K, Zhang XQ, Ding LS, et al. β-Cyclodextrin based air filter for high-efficiency filtration of pollution sources. J Hazard Mater, 2019, 373: 197-203.
CrossRef Google scholar
[326.]
Zhu X, Feng S, Rao Y, Ju S, Zhong Z, Xing W. A novel semi-dry method for rapidly synthesis ZnO nanorods on SiO2@PTFE nanofiber membrane for efficient air cleaning. J Membr Sci, 2022, 645: 120206.
CrossRef Google scholar
[327.]
Li TT, Zhang H, Gao B, Shiu BC, Ren HT, Peng HK, et al. Daylight-driven rechargeable, antibacterial, filtrating micro/nanofibrous composite membranes with bead-on-string structure for medical protection. Chem Eng J, 2021, 422: 130007.
CrossRef Google scholar
[328.]
Wang B, Wang Q, Wang Y, Di J, Miao S, Yu J. Flexible multifunctional porous nanofibrous membranes for high-efficiency air filtration. ACS Appl Mater Interfaces, 2019, 11: 43409-43415.
CrossRef Google scholar
[329.]
Bentayeb M, Simoni M, Norback D, et al. Indoor air pollution and respiratory health in the elderly. J Environ Health Sci Part A, 2013, 48: 1783-1789.
CrossRef Google scholar
[330.]
Boor BE, Spilak MP, Laverge J, Novoselac A, Xu Y. Human exposure to indoor air pollutants in sleep microenvironments: a literature review. Build Environ, 2017, 125: 528-555.
CrossRef Google scholar
[331.]
Ni R, Xu H, Ma J, Lu Q, Hu Y, Huang C, et al. Zeolite imidazole framework-8 (ZIF-8) decorated keratin-based air filters with formaldehyde removal and photocatalytic disinfection performance. Mater Today Chem, 2022, 23: 100689.
CrossRef Google scholar
[332.]
Ma S, Zhang M, Nie J, Tan J, Yang B, Song S. Design of double-component metal–organic framework air filters with PM2.5 capture, gas adsorption and antibacterial capacities. Carbohydr Polym, 2019, 203: 415-422.
CrossRef Google scholar
[333.]
Feng S, Li D, Low ZX, Liu Z, Zhong Z, Hu Y, et al. ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter. J Membr Sci, 2017, 531: 86-93.
CrossRef Google scholar
[334.]
Wang H, Zu D, Jiang X, Xu Y, Cui Z, Du P, et al. Bifunctional activated carbon ultrathin fibers: combining the removal of VOCs and PM in one material. Adv Fiber Mater, 2023, 5: 1934-1948.
CrossRef Google scholar
[335.]
Cheng Z, Li X, Zhang L, Yuan Z, Zheng H, Guo H, et al. Flexible and MOF-808 uniformly assembled polyimide nanofiber membranes with excellent mechanical properties for rapid degradation of chemical warfare agents. Chem Eng J, 2023, 475: 145912.
CrossRef Google scholar
Funding
National Natural Science Foundation of China(21921006)

Accesses

Citations

Detail

Sections
Recommended

/