Influence of precursor concentration on printable mesoscopic perovskite solar cells
Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN
Influence of precursor concentration on printable mesoscopic perovskite solar cells
Over the last decade, the power conversion efficiency of hybrid organic–inorganic perovskite solar cells (PSCs) has increased dramatically from 3.8% to 25.2%. This rapid progress has been possible due to the accurate control of the morphology and crystallinity of solution-processed perovskites, which are significantly affected by the concentration of the precursor used. This study explores the influence of precursor concentrations on the performance of printable hole-conductor-free mesoscopic PSCs via a simple one-step drop-coating method. The results reveal that lower concentrations lead to larger grains with inferior pore filling, while higher concentrations result in smaller grains with improved pore filling. Among concentrations ranging from 0.24–1.20 M, devices based on a moderate strength of 0.70 M were confirmed to exhibit the best efficiency at 16.32%.
printable perovskite solar cell (PSC) / precursor concentration / crystallization / morphology
[1] |
Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354(6309): 206–209
CrossRef
Pubmed
Google scholar
|
[2] |
Liu S, Guan Y, Sheng Y, Hu Y, Rong Y, Mei A, Han H. A review on additives for halide perovskite solar cells. Advanced Energy Materials, 2020, 10(13): 1902492
CrossRef
Google scholar
|
[3] |
Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344
CrossRef
Pubmed
Google scholar
|
[4] |
Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476–480
CrossRef
Pubmed
Google scholar
|
[5] |
Tong J, Song Z, Kim D H, Chen X, Chen C, Palmstrom A F, Ndione P F, Reese M O, Dunfield S P, Reid O G, Liu J, Zhang F, Harvey S P, Li Z, Christensen S T, Teeter G, Zhao D, Al-Jassim M M, van Hest M F A M, Beard M C, Shaheen S E, Berry J J, Yan Y, Zhu K. Carrier lifetimes of >1 ms in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364(6439): 475–479
CrossRef
Pubmed
Google scholar
|
[6] |
Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H, Seok S I. Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Science, 2019, 366(6466): 749–753
CrossRef
Pubmed
Google scholar
|
[7] |
Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3(9): 2179–2192
|
[8] |
Lin R, Xiao K, Qin Z, Han Q, Zhang C, Wei M, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A, Zhu J, Sargent E H, Tan H. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 2019, 4(10): 864–873
CrossRef
Google scholar
|
[9] |
Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525
CrossRef
Pubmed
Google scholar
|
[10] |
Gong X, Li M, Shi X B, Ma H, Wang Z K, Liao L S. Controllable perovskite crystallization by water additive for high-performance solar cells. Advanced Functional Materials, 2015, 25(42): 6671–6678
CrossRef
Google scholar
|
[11] |
Bi D, Yi C, Luo J, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 2016, 1(10): 16142
CrossRef
Google scholar
|
[12] |
Zhou Y, Game O S, Pang S, Padture N P. Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. Journal of Physical Chemistry Letters, 2015, 6(23): 4827–4839
CrossRef
Pubmed
Google scholar
|
[13] |
McMeekin D P, Wang Z, Rehman W, Pulvirenti F, Patel J B, Noel N K, Johnston M B, Marder S R, Herz L M, Snaith H J. Crystallization kinetics and morphology control of Formamidinium-Cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Advanced Materials, 2017, 29(29): 1607039
CrossRef
Pubmed
Google scholar
|
[14] |
Nayak P K, Moore D T, Wenger B, Nayak S, Haghighirad A A, Fineberg A, Noel N K, Reid O G, Rumbles G, Kukura P, Vincent K A, Snaith H J. Mechanism for rapid growth of organic-inorganic halide perovskite crystals. Nature Communications, 2016, 7(1): 13303
CrossRef
Pubmed
Google scholar
|
[15] |
Noel N K, Congiu M, Ramadan A J, Fearn S, McMeekin D P, Patel J B, Johnston M B, Wenger B, Snaith H J. Unveiling the Influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule, 2017, 1(2): 328–343
CrossRef
Google scholar
|
[16] |
Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 2012, 134(42): 17396–17399
CrossRef
Pubmed
Google scholar
|
[17] |
Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897–903
CrossRef
Pubmed
Google scholar
|
[18] |
Chen J, Xiong Y, Rong Y, Mei A, Sheng Y, Jiang P, Hu Y, Li X, Han H. Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy, 2016, 27(Supplement C): 130–137
CrossRef
Google scholar
|
[19] |
Yan K, Long M, Zhang T, Wei Z, Chen H, Yang S, Xu J. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. Journal of the American Chemical Society, 2015, 137(13): 4460–4468
CrossRef
Pubmed
Google scholar
|
[20] |
Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319
CrossRef
Pubmed
Google scholar
|
[21] |
Bi D, El-Zohry A M, Hagfeldt A, Boschloo G. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells. ACS Photonics, 2015, 2(5): 589–594
CrossRef
Google scholar
|
[22] |
Zhang H, Mao J, He H, Zhang D, Zhu H L, Xie F, Wong K S, Grätzel M, Choy W C H. A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Advanced Energy Materials, 2015, 5(23): 1501354
CrossRef
Google scholar
|
[23] |
Wieghold S, Correa-Baena J P, Nienhaus L, Sun S, Shulenberger K E, Liu Z, Tresback J S, Shin S S, Bawendi M G, Buonassisi T. Precursor concentration affects grain size, crystal orientation, and local performance in mixed-ion lead perovskite solar cells. ACS Applied Energy Materials, 2018, 1(12): 6801–6808
CrossRef
Google scholar
|
[24] |
Ku Z, Rong Y, Xu M, Liu T, Han H. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports, 2013, 3(1): 3132
CrossRef
Pubmed
Google scholar
|
[25] |
Tian C, Mei A, Zhang S, Tian H, Liu S, Qin F, Xiong Y, Rong Y, Hu Y, Zhou Y, Xie S, Han H. Oxygen management in carbon electrode for high-performance printable perovskite solar cells. Nano Energy, 2018, 53: 160–167
CrossRef
Google scholar
|
[26] |
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298
CrossRef
Pubmed
Google scholar
|
[27] |
Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H, Han H. Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408): eaat8235
CrossRef
Pubmed
Google scholar
|
[28] |
Ming Y, Xu M, Liu S, Li D, Wang Q, Hou X, Hu Y, Rong Y, Han H. Ethanol stabilized precursors for highly reproducible printable mesoscopic perovskite solar cells. Journal of Power Sources, 2019, 424: 261–267
CrossRef
Google scholar
|
[29] |
Rong Y, Hu Y, Ravishankar S, Liu H, Hou X, Sheng Y, Mei A, Wang Q, Li D, Xu M, Bisquert J, Han H. Tunable hysteresis effect for perovskite solar cells. Energy & Environmental Science, 2017, 10(11): 2383–2391
CrossRef
Google scholar
|
[30] |
Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W. Anomalous hysteresis in perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(9): 1511–1515
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |