Time-delay signature characteristics of the chaotic output from an optoelectronic oscillator by introducing an optical feedback

Xixuan LIU, Xi TANG, Zhengmao WU, Guangqiong XIA

PDF(769 KB)
PDF(769 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (4) : 402-408. DOI: 10.1007/s12200-019-0960-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Time-delay signature characteristics of the chaotic output from an optoelectronic oscillator by introducing an optical feedback

Author information +
History +

Abstract

In this work, via autocorrelation function (ACF) and permutation entropy (PE) methods, we numerically investigate the time-delay signature (TDS) characteristics of the chaotic signal output from an optoelectronic oscillator (OEO) after introducing an extra optical feedback loop. The results demonstrate that, for such a chaotic system, both the optoelectronic feedback with a delay time of T1 and the optical feedback with a delay time of T2 contribute to the TDS of generated chaos. The TDS of the chaotic signal should be evaluated within a large time window including T1 and T2 by the strongest peak in the ACF curve of the chaotic signal, and the strongest peak may locate at near T1 or T2. Through mapping the evolution of the TDS in the parameter space of the optical feedback strength and time, certain optimized parameter regions for achieving a chaotic signal with a relatively weak TDS can be determined.

Keywords

optoelectronic oscillator (OEO) / chaotic output / time-delay signature (TDS) / optical feedback

Cite this article

Download citation ▾
Xixuan LIU, Xi TANG, Zhengmao WU, Guangqiong XIA. Time-delay signature characteristics of the chaotic output from an optoelectronic oscillator by introducing an optical feedback. Front. Optoelectron., 2020, 13(4): 402‒408 https://doi.org/10.1007/s12200-019-0960-z

References

[1]
Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 2005, 438(7066): 343–346
CrossRef Pubmed Google scholar
[2]
Hong Y H, Lee M W, Paul J, Spencer P S, Shore K A. GHz bandwidth message transmission using chaotic vertical-cavity surface-emitting lasers. Journal of Lightwave Technology, 2009, 27(22): 5099–5105
CrossRef Google scholar
[3]
Chiarello F, Ursini L, Santagiustina M. Securing wireless infrared communications through optical chaos. IEEE Photonics Technology Letters, 2011, 23(9): 564–566
CrossRef Google scholar
[4]
Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photonics, 2008, 2(12): 728–732
CrossRef Google scholar
[5]
Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M. An optical ultrafast random bit generator. Nature Photonics, 2010, 4(1): 58–61
CrossRef Google scholar
[6]
Sakuraba R, Iwakawa K, Kanno K, Uchida A. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Optics Express, 2015, 23(2): 1470–1490
CrossRef Pubmed Google scholar
[7]
Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode. IEEE Photonics Technology Letters, 2008, 20(19): 1636–1638
CrossRef Google scholar
[8]
Wang A B, Wang N, Yang Y B, Wang B J, Zhang M J, Wang Y C. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser. Journal of Lightwave Technology, 2012, 30(21): 3420–3426
CrossRef Google scholar
[9]
Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics. IEEE Journal of Quantum Electronics, 2004, 40(6): 815–820
CrossRef Google scholar
[10]
Lin F Y, Liu J M. Chaotic lidar. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 991–997
CrossRef Google scholar
[11]
Wu W T, Liao Y H, Lin F Y. Noise suppressions in synchronized chaos lidars. Optics Express, 2010, 18(25): 26155–26162
CrossRef Pubmed Google scholar
[12]
Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view. IEEE Journal of Quantum Electronics, 2009, 45(7): 879–891
CrossRef Google scholar
[13]
Wu J G, Xia G Q, Wu Z M. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. Optics Express, 2009, 17(22): 20124–20133
CrossRef Pubmed Google scholar
[14]
Zhang L, Pan B, Chen G, Guo L, Lu D, Zhao L, Wang W. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Scientific Reports, 2017, 7(1): 45900
CrossRef Pubmed Google scholar
[15]
Masoller C. Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. Physical Review Letters, 2001, 86(13): 2782–2785
CrossRef Pubmed Google scholar
[16]
Zhong D, Yang G, Xiao Z, Ding Y, Xi J, Zeng N, Yang H. Optical chaotic data-selection logic operation with the fast response for picosecond magnitude. Optics Express, 2019, 27(16): 23357–23367
CrossRef Pubmed Google scholar
[17]
Chen J J, Duan Y N, Li L F, Zhong Z Q. Wideband polarization-resolved chaos with time-delay signature suppression in VCSELs subject to dual chaotic optical injections. IEEE Access: Practical Innovations, Open Solutions, 2018, 6: 66807–66815
CrossRef Google scholar
[18]
Abarbanel H D I, Kennel M B, Illing L, Tang S, Chen H F, Liu J M. Synchronization and communication using semiconductor lasers with optoelectronic feedback. IEEE Journal of Quantum Electronics, 2001, 37(10): 1301–1311
CrossRef Google scholar
[19]
Liao J F, Sun J Q. Polarization dynamics and chaotic synchronization in unidirectionally coupled VCSELs subjected to optoelectronic feedback. Optics Communications, 2013, 295: 188–196
CrossRef Google scholar
[20]
Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 1980, 16(3): 347–355
CrossRef Google scholar
[21]
Larger L, Lee M W, Goedgebuer J P, Elflein W, Erneux T. Chaos in coherence modulation: bifurcations of an oscillator generating optical delay fluctuations. Journal of the Optical Society of America. B, Optical Physics, 2001, 18(8): 1063–1068
CrossRef Google scholar
[22]
Larger L, Dudley J M. Optoelectronic chaos. Nature, 2010, 465(7294): 41–42
CrossRef Pubmed Google scholar
[23]
Kouomou Y C, Colet P, Larger L, Gastaud N. Chaotic breathers in delayed electro-optical systems. Physical Review Letters, 2005, 95(20): 203903
CrossRef Pubmed Google scholar
[24]
Callan K E, Illing L, Gao Z, Gauthier D J, Schöll E. Broadband chaos generated by an optoelectronic oscillator. Physical Review Letters, 2010, 104(11): 113901
CrossRef Pubmed Google scholar
[25]
Ikeda K, Matsumoto K. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D, Nonlinear Phenomena, 1987, 29(1-2): 223–235
CrossRef Google scholar
[26]
Murphy T E, Cohen A B, Ravoori B, Schmitt K R B, Setty A V, Sorrentino F, Williams C R S, Ott E, Roy R. Complex dynamics and synchronization of delayed-feedback nonlinear oscillators. Philosophical Transactions of Royal Society A, 2010, 368(1911): 343–366
CrossRef Pubmed Google scholar
[27]
Prokhorov M D, Ponomarenko V I, Karavaev A S, Bezruchko B P. Reconstruction of time-delayed feedback systems from time series. Physica D. Nonlinear Phenomena, 2005, 203(3–4): 209–223
CrossRef Google scholar
[28]
Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L, Zhong Z Q, Xia G Q. Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. Optics Express, 2015, 23(26): 33130–33141
CrossRef Pubmed Google scholar
[29]
Hizanidis J, Deligiannidis S, Bogris A, Syvridis D. Enhancement of chaos encryption potential by combining all-optical and electrooptical chaos generators. IEEE Journal of Quantum Electronics, 2010, 46(11): 1642–1649
CrossRef Google scholar
[30]
Gao X, Cheng M, Deng L, Liu L, Hu H, Liu D. A novel chaotic system with suppressed time-delay signature based on multiple electro-optic nonlinear loops. Nonlinear Dynamics, 2015, 82(1–2): 611–617
CrossRef Google scholar
[31]
Liu L F, Miao S X, Cheng M F, Gao X J. Two-dimensional coupled electro-optic delayed feedback system with varying parameters. Journal of Modern Optics, 2017, 64(6): 547–554
CrossRef Google scholar
[32]
Hu H P, Shi S Y, Xie F L. Electro-optic intensity chaotic system with an extra optical feedback. Optics Communications, 2017, 402: 140–146
CrossRef Google scholar
[33]
Rontani D, Locquet A, Sciamanna M, Citrin D S. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Optics Letters, 2007, 32(20): 2960–2962
CrossRef Pubmed Google scholar
[34]
Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series. Physical Review Letters, 2002, 88(17): 174102
CrossRef Pubmed Google scholar
[35]
Soriano M C, Zunino L, Rosso O A, Fischer I, Mirasso C R. Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis. IEEE Journal of Quantum Electronics, 2011, 47(2): 252–261
CrossRef Google scholar
[36]
Li N, Pan W, Xiang S, Zhao Q, Zhang L, Mu P. Quantifying the complexity of the chaotic intensity of an external-cavity semiconductor laser via sample entropy. IEEE Journal of Quantum Electronics, 2014, 50(9): 766–773
[37]
Zunino L, Rosso O A, Soriano M C. Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1250–1257
CrossRef Google scholar
[38]
Lavrov R, Peil M, Jacquot M, Larger L, Udaltsov V, Dudley J. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization. Physical Review. E, 2009, 80(2): 026207
CrossRef Pubmed Google scholar
[39]
Lavrov R, Jacquot M, Larger L. Nonlocal nonlinear electro-optic Phase dynamics demonstrating 10 Gbs/s chaos communications. IEEE Journal of Quantum Electronics, 2010, 46(10): 1430–1435
CrossRef Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61575163, 61775184, 11704316, and 61875167).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(769 KB)

Accesses

Citations

Detail

Sections
Recommended

/